精英家教网 > 高中数学 > 题目详情
3.已知x>0,y>0,4x+9y=1,则$\frac{1}{x}$+$\frac{1}{y}$的最小值为25.

分析 将$\frac{1}{x}$+$\frac{1}{y}$ 转化成( $\frac{1}{x}$+$\frac{1}{y}$)(4x+9y),然后化简整理后利用基本不等式即可求出最小值,注意等号成立的条件

解答 解;∵x>0,y>0,4x+9y=1,
∴$\frac{1}{x}$+$\frac{1}{y}$=( $\frac{1}{x}$+$\frac{1}{y}$)(4x+9y)=4+9+$\frac{4x}{y}$$+\frac{9y}{x}$$≥13+2\sqrt{36}$=13+12=25(当且仅当2x=3y等号成立),
∴$\frac{1}{x}$+$\frac{1}{y}$的最小值为25,
故答案为;25.

点评 本题考查基本不等式,着重考查整体代换的思想,易错点在于应用基本不等式时需注意“一正二定三等”三个条件缺一不可,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设△ABC的内角A,B,C所对应的边分别为a,b,c,已知a=1,b=2,cosC=$\frac{1}{4}$.
(1)求△ABC的周长;
(2)求cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知直线AB:y=kx+2k+4与抛物线y=$\frac{1}{2}$x2交于A,B两点.

(1)直线AB总经过一个定点C,请直接出点C坐标;
(2)当k=-$\frac{1}{2}$时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;
(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,角A、B、C所对的边分别为a,b,c,且c=$\sqrt{6}$-$\sqrt{2}$,C=30°,则a+b的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.奇函数f(x)在区间[2,9]上是单调递增函数,在区间[3,8]上的最大值为9,最小值为2,则f(-8)-2f(-3)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,在其定义域上既是奇函数,又是增函数的函数是(  )
A.y=1B.y=-$\frac{3}{x}$C.y=x2D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义在(-∞,0)∪(0,+∞)上的函数f(x)对任何x,y都有f(xy)=f(x)f(y),且f(x)>0,当x>1时,有f(x)<1.
(1)判断f(x)的奇偶性;
(2)判断并证明f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线y=-x2-(m+1)x+$\frac{1}{4}$m2+1(m为实数).
(1)若对任意两个正数x1<x2,对应的函数值y1>y2,求m的取值范围;
(2)在(1)中条件下,若同时对任意两个负数x1<x2,对应的函数值y1<y2,求m的值或取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列求导数运算错误的是(  )
A.(3x)′=3xln3B.(x2lnx)′=2xlnx+x
C.($\frac{cosx}{x}$)′=$\frac{xsinx-cosx}{{x}^{2}}$D.(x+$\frac{1}{x}$+$\sqrt{x}$)′=1-$\frac{1}{{x}^{2}}$+$\frac{1}{2\sqrt{x}}$

查看答案和解析>>

同步练习册答案