精英家教网 > 高中数学 > 题目详情
下列从集合M到集合N的对应f是映射的是(  )
A、
B、
C、
D、
考点:映射
专题:探究型,函数的性质及应用
分析:根据映射的概念,对于集合A中的每一个元素在集合B中都有唯一的元素与它对应,即可得出结论
解答: 解:对于A,2在B中有两个元素与它对应;
对于B,2在B中没有元素与它对应;
对于C,对于集合A中的每一个元素在集合B中都有唯一的元素与它对应,
对于D,1在B中有两个元素与它对应.
故选:C.
点评:此题是个基础题.考查映射的概念,同时考查学生对基本概念理解程度和灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若椭圆
x2
m
+
y2
p
=1与双曲线
x2
n
-
y2
p
=1(m,n,p>0,m≠p)有公共的焦点F1,F2,其交点为Q,则△QF1F2的面积是(  )
A、m+n
B、
m+n
2
C、p
D、
p
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kex-2,g(x)=
2kx-k-1
x

(1)若h(x)=f(x)-x+2,x∈R,有两个不同的零点,求实数k的取值范围;
(2)若k>0,对?x>0,均有f(x)≥g(x)成立,求正实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若n是自然数,证明:2n>n.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知AB=AC,BC=4,点P在边BC上,
PA
PC
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(2+a|x|),且关于x的不等式f(x+a)<f(x)的解集为A,若[-
1
2
1
2
]⊆A,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若loga(π-3)<logb(π-3)<0,a,b为不等于1的正数,则下列不等式中正确(  )
A、b>a>1
B、a<b<1
C、a>b>1
D、b<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为实数集R上的常数,函数f(x)在x=1处取得极值0.
(1)已知函数h(x)=f(x)-k,若h(x)有两个零点,求实数k的取值范围;
(2)设函数g(x)=(p-2)x+
p+2
x
,其中p≤0,若对任意的x∈[1,2],总有2f(x)≥g(x)+4x-2x2成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
(2x+1)(x+a)
x
为奇函数,则实数a的值为
 

查看答案和解析>>

同步练习册答案