精英家教网 > 高中数学 > 题目详情

【题目】如图所示,是临江公园内一个等腰三角形形状的小湖(假设湖岸是笔直的),其中两腰.为了给市民营造良好的休闲环境,公园管理处决定在湖岸上分别取点(异于线段端点),在湖上修建一条笔直的水上观光通道(宽度不计),使得三角形和四边形的周长相等.

(1)若水上观光通道的端点为线段的三等分点(靠近点),求此时水上观光通道的长度

(2)当为多长时观光通道的长度最短并求出其最短长度.

【答案】(1) 水上观光通道的长度为米;(2) 当米时,水上观光通道的长度取得最小值,最小值为米.

【解析】分析:(1)在等腰中,过点,先计算出,再利用余弦定理求出EF的长度.(2) 设,先求出EF的表达式,再利用基本不等式求其最短长度.

详解:(1)在等腰中,过点

中,由,即,∴

∴三角形和四边形的周长相等.

,即

.

为线段的三等分点(靠近点),∴

中,

米.

即水上观光通道的长度为米.

(2)由(1)知,,设,在中,由余弦定理,得

.

,∴.

,当且仅当取得等号,

所以,当米时,水上观光通道的长度取得最小值,最小值为米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线有相同的焦点为原点,点是准线上一动点,点在抛物线上,且,则的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一名学生骑自行车上学,从他家到学校的途中有个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.求:

)这名学生在途中遇到次红灯次数的概率.

)这名学生在首次停车前经过了个路口的概率.

)这名学生至少遇到一次红灯的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 则方程 为正实数)的实数根最多有_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线C的焦点在轴上,离心率为,其一个顶点的坐标是(0,1.

Ⅰ)求双曲线C的标准方程;

Ⅱ)若直线与该双曲线交于AB两点,且AB的中点为(2,3),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.

(1)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率.

(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的图像可由的图像平移得到,对于任意的实数,均有成立,且存在实数,使得为奇函数.

(Ⅰ)求函数的解析式.

(Ⅱ)函数的图像与直线有两个不同的交点,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 上顶点为右焦点为过右顶点作直线且与轴交于点又在直线和椭圆上分别取点和点满足为坐标原点),连接.

1)求的值,并证明直线与圆相切;

(2)判断直线与圆是否相切?若相切,请证明;若不相切,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】”是“对任意的正数 ”的( )

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

【答案】A

【解析】分析:根据基本不等式,我们可以判断出”?“对任意的正数x2x+≥1”对任意的正数x2x+≥1”?“a=

真假,进而根据充要条件的定义,即可得到结论.

解答:解:当“a=时,由基本不等式可得:

对任意的正数x2x+≥1”一定成立,

“a=”?“对任意的正数x2x+≥1”为真命题;

对任意的正数x2x+≥1时,可得“a≥

对任意的正数x2x+≥1”?“a=为假命题;

“a=对任意的正数x2x+≥1充分不必要条件

故选A

型】单选题
束】
9

【题目】如图是一几何体的平面展开图,其中为正方形, 分别为 的中点,在此几何体中,给出下面四个结论:①直线与直线异面;②直线与直线异面;③直线平面;④平面平面

其中一定正确的选项是( )

A. ①③ B. ②③ C. ②③④ D. ①③④

查看答案和解析>>

同步练习册答案