精英家教网 > 高中数学 > 题目详情

【题目】某生态农庄有一块如图所示的空地,其中半圆O的直径为300米,A为直径延长线上的点,米,B为半圆上任意一点,以AB为一边作等腰直角,其中BC为斜边.

;,求四边形OACB的面积;

现决定对四边形OACB区域地块进行开发,将区域开发成垂钓中心,预计每平方米获利10元,将区域开发成亲子采摘中心,预计每平方米获利20元,则当为多大时,垂钓中心和亲子采摘中心获利之和最大?

【答案】(1)平方米;(2)

【解析】

计算的面积,求和得出四边形OABC的面积;

,求出的面积和,得出目标函数的解析式,再求该函数取得最大值时对应的值.

时,

平方米

中,由余弦定理得,

平方米

四边形OABC的面积为

平方米

,则

所以

中,由余弦定理得,

不妨设垂钓中心和亲子中心获利之和为y元,

则有

化简得

因为

所以当时,垂钓中心和亲子采摘中心获利之和最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知fx)=1nx2x+1,其中a≠0

1)当a1时,求fx)的极值;

2)当a0时,证明:fx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点E为正方形ABCDCD上异于点CD的动点,将△ADE沿AE翻折成△SAE,在翻折过程中,下列三个说法中正确的个数是(

①存在点E和某一翻折位置使得AE∥平面SBC

②存在点E和某一翻折位置使得SA⊥平面SBC

③二面角SABE的平面角总是小于2SAE

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,且a2+2a4a9S636

1)求anSn

2)若数列{bn}满足b11,求证:nN*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现定义:设是非零实常数,若对于任意的,都有,则称函数为“关于的偶型函数”

1)请以三角函数为例,写出一个“关于2的偶型函数”的解析式,并给予证明

2)设定义域为的“关于的偶型函数”在区间上单调递增,求证在区间上单调递减

3)设定义域为的“关于的偶型函数”是奇函数,若,请猜测的值,并用数学归纳法证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,又数列满足:.

(1)求证:数列是等比数列;

(2)若数列是单调递增数列,求实数的取值范围;

(3)若数列的各项皆为正数,,设是数列的前项和,问:是否存在整数,使得数列是单调递减数列?若存在,求出整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数。

(1)证明:内存在唯一的极小值点;

(2)证明:当时,有且只有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年底,我国发明专利申请量已经连续年位居世界首位,下表是我国年至年发明专利申请量以及相关数据.

注:年份代码分别表示.

1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?

2)建立关于的回归直线方程(精确到),并预测我国发明专利申请量突破万件的年份.

参考公式:回归直线的斜率和截距的最小二乘法估计分别为

查看答案和解析>>

同步练习册答案