精英家教网 > 高中数学 > 题目详情

【题目】已知函数 是奇函数.

1)求实数的值;

2)判断函数上的单调性,并给出证明;

3)当时,函数的值域是,求实数的值

【答案】1解:(1)由已知条件得

对定义域中的均成立.………………………………1

对定义域中的均成立.

(舍去)或. …………………………………4

2)由(1)得

时,

. ………………………………6

时,,即.

时,上是减函数. ………………………………8

同理当时,上是增函数. ………………………10

3函数的定义域为

.

为增函数,

要使值域为

(无解)

.

为减函数,

要使的值域为,

. ……………………………14

【解析】

试题

(1)由奇函数的性质得到关于实数m的方程,解方程可得m=-1;

(2)结合(1)的结论首先确定函数的解析式,结合对数函数的性质可知当a>1,f(x)(1,+∞)上单调递减; 0<a<1,f(x)(1,+∞)上单调递增;

(3)结合奇函数的性质和(2)中确定的函数的单调性得到关于实数a,n的方程组,分类讨论求解方程组可得.

试题解析:

(1)由为奇函数,则对定义域任意恒有 (舍去1)

(2)由(1)得,当时,

时,现证明如下:

(3)由题意知定义域上的奇函数。

①当时,由(2)知在(n,a-2)f(x)为增函数,

由值域为(1,+∞)无解;

②当(n,a-2)(1,+∞)1≤n<a-2a/span>>3,

由(2)知在(n,a-2)f(x)为减函数,

由值域为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)抛掷一颗骰子两次,定义随机变量

试写出随机变量的分布列(用表格格式);

(2)抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,求第二次掷得向上一面点数也是偶数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,圆C的方程为 (θ为参数).以坐标原点O为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程.

(Ⅰ)当时,判断直线的关系;

(Ⅱ)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.

产品质量/克

频数

(490495]

6

(495500]

8

(500505]

14

(505510]

8

(510515]

4

甲流水线样本频数分布表:

甲流水线

乙流水线

总计

合格品

不合格品

总计

1根据上表数据作出甲流水线样本的频率分布直方图

2若以频率作为概率,试估计从乙流水线任取件产品,该产品恰好是合格品的概率;

3由以上统计数据完成下面列联表,能否在犯错误的概率不超过的前提下认为产品的包装质量与两条自动包装流水线的选择有关?

附表:

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|x2-11x+18<0},B={x|-2≤x≤5}.

(1)求ABB∪(UA);

(2)已知集合C={x|axa+2},若C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的上、下焦点分别为F1 , F2 , 点D在椭圆上,DF2⊥F1F2 , △F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.
(1)求椭圆E与抛物线C的方程;
(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A、B、C所对的边a、b、c,且
(1)求角A
(2)若 ,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数24;第三次取3个连续奇数579;第四次取4个连续偶数10121416;第五次取5个连续奇数1719212325,按此规律取下去,得到一个子数列124579101214161719…,则在这个子数中第2014个数是(

A. 3965 B. 3966 C. 3968 D. 3989

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣x2﹣ax.
(1)若曲线y=f(x)在点x=0处的切线斜率为1,求函数f(x)在[0,1]上的最值;
(2)令g(x)=f(x)+ (x2﹣a2),若x≥0时,g(x)≥0恒成立,求实数a的取值范围;
(3)当a=0且x>0时,证明f(x)﹣ex≥xlnx﹣x2﹣x+1.

查看答案和解析>>

同步练习册答案