精英家教网 > 高中数学 > 题目详情

【题目】如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为(
A. a2
B.a2
C.2 a2
D.2a2

【答案】C
【解析】解:由斜二测画法的规则知与x′轴平行的线段其长度不变以及与横轴平行的性质不变,正方形对角线在y′轴上, 可求得其长度为 a,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2 a,
∴原平面图形的面积为 =
故选:C.
由斜二测画法的规则知在已知图形平行于x轴的线段,在直观图中画成平行于x′轴,长度保持不变,已知图形平行于y轴的线段,在直观图中画成平行于y′轴,且长度为原来一半.由于y′轴上的线段长度为 a,故在平面图中,其长度为2 a,且其在平面图中的y轴上,由此可以求得原平面图形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中错误的个数为(
①一个命题的逆命题为真,它的否命题也一定为真;
②若一个命题的否命题为假,则它本身一定为真;
的充要条件;
与a=b是等价的;
⑤“x≠3”是“|x|≠3”成立的充分条件.
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=xsinx,x1、x2∈[﹣ ],且f(x1)>f(x2),则下列结论必成立的是(
A.x1>x2
B.x1+x2>0
C.x1<x2
D.x12>x22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,﹣ )的图象如图所示,直线x= ,x= 是其两条对称轴.
(1)求函数f(x)的解析式及单调区间;
(2)若f(α)= ,且 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,当时, ),且曲线处的切线与直线平行.

(1)求的值及函数的解析式;

(2)若函数在区间上有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据《中华人民共和国道路交通安全法》规定:“车辆驾驶员血液酒精溶度(单位mg/100ml)/在,属于酒后驾驶;血液浓度不低于80,属于醉酒驾驶。”2017年“中秋节”晚9点开始,济南市交警队在杆石桥交通岗前设点,对过往的车辆进行检查,经过4个小时,共查处喝过酒的驾驶者60名,下图是用酒精测试仪对这60名驾驶者血液中酒精溶度进行检测后所得结果画出的频率分布直方图。

(1)求这60名驾驶者中属于醉酒驾车的人数(图中每组包括左端点,不包括右端点)

(2)若以各小组的中值为该组的估计值,频率为概率的估计值,求这60名驾驶者血液的酒精浓度的平均值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的方程为:ax2+ay2﹣2a2x﹣4y=0(a≠0,a为常数).
(1)判断曲线C的形状;
(2)设曲线C分别与x轴、y轴交于点A、B(A、B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;
(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M、N,且|OM|=|ON|,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】西部大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:
(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,角 所对的边分别为 ,已知.

(1)证明: .

(2)若的面积 为线段的中点, ,求.

查看答案和解析>>

同步练习册答案