精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD中,AD∥BC,AD⊥DC,侧面APD为等腰直角三角形,PA⊥PD,平面PAD⊥底面ABCD,E为侧棱PC上不同于端点的一点.
(Ⅰ)求证:PA⊥DE:
(Ⅱ)设AD=2BC=2,CD=数学公式,求三棱锥D-PBC的高.

(Ⅰ)证明:∵AD⊥DC,平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,∴DC⊥平面PAD
∵PA?平面PAD,∴DC⊥PA
∵PA⊥PD,PD∩DC=D,∴PA⊥平面PDC
∵DE?平面PDC,∴PA⊥DE;
(Ⅱ)作PF⊥AD,F为垂足,则F为AD中点,且PF=1,连接BF
∵PF⊥AD,平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,∴PF⊥底面ABCD,∴PF⊥BF
∵BC∥FD,BC=FD,∴四边形BCDF是平行四边形
∵BF=CD=,∴PB=2
∵BF∥CD,AD⊥CD,∴AD⊥BF
∵AD⊥PF,BF∩PF=F
∴AD⊥面PFB,∴BC⊥面PFB
作FH⊥PB,垂足为H,由FH?面PFB,可得FH⊥BC
∴FH⊥面PBC,∴FH的长度为F到面PBC的距离
∵FD∥BC,BC?面PBC,FD?面PBC
∴FD∥面PBC
设棱锥D-PBC的高为h,∴h=FH
由PF•FB=PB•FH,得FH=
∴三棱锥D-PBC的高为
分析:(Ⅰ)证明PA⊥DE,只需证明PA⊥平面PDC,利用AD⊥DC,平面PAD⊥底面ABCD,可证DC⊥平面PAD,从而可得结论;
(Ⅱ)作PF⊥AD,F为垂足,则F为AD中点,且PF=1,连接BF,可得BC⊥面PFB,作FH⊥PB,垂足为H,由FH?面PFB,可得FH⊥BC,从而FH⊥面PBC,故FH的长度为F到面PBC的距离,即三棱锥D-PBC的高.
点评:本题考查面面垂直、线面垂直、线线垂直,考查三棱锥的高,解题的关键是正确面面垂直的性质、线面垂直的判定,正确作出三棱锥的高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案