精英家教网 > 高中数学 > 题目详情
直线l1:y=mx+1,直线l2的方向向量为=(1,2),且l1⊥l2,则m=   
【答案】分析:利用直线的方向向量与直线斜率的关系求出直线斜率,利用直线垂直的斜率乘积为-1,列出方程求出m的值.
解答:解:∵直线l2的方向向量为
∴直线l2的斜率为2
∵直线l1:y=mx+1
∴直线l1的斜率为m
∵l1⊥l2
∴2m=-1

故答案为
点评:本题考查直线若存在斜率时,两直线垂直的充要条件是它们的斜率乘积为-1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l1:y=mx+1,直线l2的方向向量为
a
=(1,2),且l1⊥l2,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|m|<1,直线l1:y=mx+1,l2:x=-my+1,l1与l2相交于点P,l1交y轴于点A,l2交x轴于点B
(1)证明:l1⊥l2
(2)用m表示四边形OAPB的面积S,并求出S的最大值;
(3)设S=f(m),求U=S+
1S
的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点O,其中一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的标准方程;
(2)(普通中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.
(重点中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,C是直线L1:y=mx+6上任一点(A、B、C三点不共线)试问:是否存在实数k,使得△ABC是以AB为底边的等腰三角形?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l1:y=mx+1,直线l2的方向向量为
a
=(1,2),且l1⊥l2,则m=(  )

查看答案和解析>>

科目:高中数学 来源:2005-2006学年浙江省温州市高二(上)期末数学试卷(解析版) 题型:解答题

已知双曲线的中心在原点O,其中一条准线方程为,且与椭圆有共同的焦点.
(1)求此双曲线的标准方程;
(2)(普通中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.
(重点中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,C是直线L1:y=mx+6上任一点(A、B、C三点不共线)试问:是否存在实数k,使得△ABC是以AB为底边的等腰三角形?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案