(本小题满分14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,
∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求证:PC⊥;
(2)求证:CE∥平面PAB;
(3)求三棱锥P-ACE的体积V.
(1) 略
(2) 略
(3) V=
【解析】解:(1)在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=,AC=2.取中点,连AF, EF,
∵PA=AC=2,∴PC⊥. (1分)
∵PA⊥平面ABCD,平面ABCD,
∴PA⊥,又∠ACD=90°,即,
∴,∴,
∴. (3分)
∴. (4分)
∴PC⊥. (5分)
(2)证法一:取AD中点M,连EM,CM.则
EM∥PA.∵EM 平面PAB,PA平面PAB,
∴EM∥平面PAB. (7分)
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC 平面PAB,AB平面PAB,
∴MC∥平面PAB. (9分)
∵EM∩MC=M,∴平面EMC∥平面PAB.
∵EC平面EMC,∴EC∥平面PAB. (10分)
证法二:延长DC、AB,设它们交于点N,连PN.
∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND的中点. (7分)
∵E为PD中点,∴EC∥PN. (9分)
∵EC 平面PAB,PN平面PAB,∴EC∥平面PAB. (10分)
(3)由(1)知AC=2,EF=CD, 且EF⊥平面PAC.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,得EF=. (12分)
则V=. (14分)
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com