14£®ÒÑÖªÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\sqrt{2}cos¦Õ}\\{y=1+\sqrt{2}sin¦Õ}\end{array}\right.$£¬£¨¦ÕΪ²ÎÊý£©£¬Ö±ÏßlµÄ·½³ÌÊÇx+y-a=0£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÔ²CÓëÖ±ÏßlµÄ¼«×ø±ê·½³ÌÒÔ¼°Ô²ÐÄCµÄ¼«×ø±ê£»
£¨2£©ÒÑÖªÔ²CºÍÖ±ÏßlÏཻÓÚA£¬BÁ½µã£¬Èô¡÷AOBÊǵȱßÈý½ÇÐΣ¬ÇóʵÊýaµÄÖµ£®

·ÖÎö £¨1£©°ÑÔ²CµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÔÙ°ÑÆÕͨ·½³Ì»¯Îª¼«×ø±ê·½³Ì£¬
°ÑÖ±ÏßlµÄÆÕͨ·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÀûÓÃÔ²CºÍÖ±ÏßlµÄÆÕͨ·½³ÌÁªÁ¢£¬ÏûÈ¥y£¬ÀûÓøùÓëϵÊýµÄ¹ØϵÇó³ö|AB|¡¢|OA|£¬
ÓÉ¡÷AOBÊǵȱßÈý½ÇÐΣ¬µÃ|AB|=|OA|£¬Çó³öaµÄÖµ£®

½â´ð ½â£º£¨1£©°ÑÔ²CµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=1+\sqrt{2}cos¦Õ}\\{y=1+\sqrt{2}sin¦Õ}\end{array}\right.$£¬£¨¦ÕΪ²ÎÊý£©
»¯ÎªÆÕͨ·½³ÌÊÇ£¨x-1£©2+£¨y-1£©2=2£¬
ÔÙ»¯Îª¼«×ø±ê·½³ÌÊÇ£¨¦Ñcos¦È-1£©2+£¨¦Ñsin¦È-1£©2=2£¬
¼´¦Ñ=0£¨ÉáÈ¥£©£¬¦Ñ=2sin¦È+2cos¦È£»
Ô²ÐÄ×ø±êÊÇ£¨1£¬1£©£¬
Ô²Ðĵļ«×ø±êÊÇ£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£»
°ÑÖ±ÏßlµÄ·½³Ìx+y-a=0»¯Îª¼«×ø±ê·½³ÌÊÇ
¦Ñcos¦È+¦Ñsin-a=0£¬
¼´¦Ñ=$\frac{a}{sin¦È+cos¦È}$£»
£¨2£©Ô²C£º£¨x-1£©2+£¨y-1£©2=2£¬ºÍÖ±Ïßl£ºx+y-a=0ÏཻÓÚA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©Á½µã£¬
¼´$\left\{\begin{array}{l}{x+y-a=0}\\{{£¨x-1£©}^{2}{+£¨y-1£©}^{2}=2}\end{array}\right.$£¬
ÏûÈ¥y£¬µÃ2x2-2ax+a2-2a=0£»
¡àx1+x2=a£¬x1x2=$\frac{{a}^{2}-2a}{2}$£¬
¡à|AB|=$\sqrt{1{+k}^{2}}$•$\sqrt{{{£¨x}_{1}{+x}_{2}£©}^{2}-{{4x}_{1}x}_{2}}$=$\sqrt{2}$•$\sqrt{{a}^{2}-4¡Á\frac{{a}^{2}-2a}{2}}$=$\sqrt{2}$•$\sqrt{4a{-a}^{2}}$£¬
ÓÉ${{£¨x}_{1}-1£©}^{2}$+${{£¨y}_{1}-1£©}^{2}$=2£¬
µÃ${{x}_{1}}^{2}$+${{y}_{1}}^{2}$=2£¨x1+y1£©£¬
ÓÖx1+y1-a=0£¬
¡à|OA|=$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}}$=$\sqrt{2{£¨x}_{1}{+y}_{1}£©}$=$\sqrt{2}$•$\sqrt{a}$£»
ÓÖ¡÷AOBÊǵȱßÈý½ÇÐΣ¬¡à|AB|=|OA|£¬
¼´$\sqrt{2}$•$\sqrt{4a{-a}^{2}}$=$\sqrt{2}$•$\sqrt{a}$£¬
½âµÃa=0£¨²»ºÏÌâÒ⣬ÉáÈ¥£©»òa=3£»
¡àʵÊýaµÄֵΪ3£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÔ²µÄ·½³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˲ÎÊý·½³ÌÓ뼫×ø±êµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÊýÁÐ{an}Âú×ãa1=1£¬an+1=an+n+1£¨n¡ÊN£©£¬Ôò$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+¡­+$\frac{1}{{a}_{2015}}$µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{2015}{2016}$B£®$\frac{4028}{2015}$C£®$\frac{2015}{1008}$D£®$\frac{1007}{1008}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì¹ã¶«»ªÄÏʦ´ó¸½ÖиßÈý×ۺϲâÊÔÒ»Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

¹ýº¯ÊýͼÏñÉÏÒ»¸ö¶¯µã×÷º¯ÊýµÄÇÐÏߣ¬ÔòÇÐÏßÇãб½ÇµÄ·¶Î§ÊÇ_________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Éè×óÓÒ½¹µã·Ö±ðΪF1¡¢F2µÄÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬PΪÍÖÔ²CÉÏÈÎÒâÒ»µã£¬ÇÒ$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$µÄ×îСֵΪ2£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ý×ø±êÔ­µãO×÷Á½Ìõ»¥Ïà´¹Ö±µÄÉäÏߣ¬ÓëÍÖÔ²C·Ö±ð½»ÓÚA¡¢BÁ½µã£¬Ö¤Ã÷£ºÖ±ÏßABÓëÔ²x2+y2=$\frac{12}{7}$ÏàÇУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®f£¨x£©=ax3+bx2-3xÔÚx=-1´¦µÄ¼«´óÖµ2£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èô¹ýµãA£¨1£¬m£©£¨m¡Ù2£©¿É×÷ÇúÏßµÄÈýÌõÇÐÏߣ¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èç¹ûʼþA£¬B»¥³â£¬¼Ç$\overline{A}$£¬$\overline{B}$·Ö±ðΪʼþA£¬BµÄ¶ÔÁ¢Ê¼þ£¬ÄÇô£¨¡¡¡¡£©
A£®A¡ÈBÊDZØȻʼþB£®$\overline{A}$¡È$\overline{B}$ÊDZØȻʼþC£®$\overline{A}$Óë$\overline{B}$Ò»¶¨»¥³âD£®$\overline{A}$Óë$\overline{B}$Ò»¶¨²»»¥³â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èôx0ÊÇ·½³Ìlgx+x=2µÄ½â£¬Ôòx0¡Ê¢Ü¢Ù£¨0£¬1£©¢Ú£¨1£¬1.25£©¢Û£¨1.25£¬1.75£©¢Ü£¨1.75£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ¡÷ABCÖУ¬sinC=3sin£¨B-A£©£®
£¨1£©ÇóÖ¤£º$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\overrightarrow{BA}$•$\overrightarrow{BC}$£»
£¨2£©ÈôcosC=-$\frac{\sqrt{10}}{10}$£¬ÇóBµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=lg£¨x2-ax+a£©µÄÖµÓòΪR£¬ÃüÌâp£ºº¯Êýf£¨x£©µÄͼÏó¿ÉÄܹØÓÚyÖá¶Ô³Æ£¬ÃüÌâq£ºº¯Êýf£¨x£©µÄͼÏó¾­¹ý¶¨µã£®
£¨1£©ÅжÏÃüÌâ©Vp£¬p¡Åq£¬p¡ÄqµÄÕæ¼Ù£»
£¨2£©Èôº¯Êýf£¨x£©Óëg£¨x£©=lgxµÄͼÏóÇ¡ÓÐÁ½¸ö½»µã£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©Èôº¯ÊýH£¨x£©=f£¨x£©+f£¨$\frac{1}{x}$£©ÔÚ[3£¬+¡Þ£©ÉϵÝÔö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸