精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)当时,求函数的极值;

(2)若不等式对任意恒成立,求实数的取值范围.

【答案】(1)的极大值为,无极小值;(2).

【解析】

(1)求出函数的导数,进而得到函数的单调性,然后可得函数的极值.(2)通过对参数的讨论得到函数的单调性,进而得到函数的最大值,然后将恒成立问题转化为,解不等式可得所求范围.

(1)当时,

变化时,的变化情况如下表:

+

0

-

极大值

由表知,当时,函数取得极大值,且极大值为,无极小值.

(2)由题意得

①当时,则

∴函数上单调递增,

∴对任意不恒成立.

②当时,

则当时,单调递增;当时,单调递减.

∴当时,函数取得极大值,也为最大值,且

∵不等式对任意恒成立,

,解得

综上可得实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给图中ABCDEF六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点为圆上的动点轴上的投影为动点满足动点的轨迹为.

(Ⅰ)求的方程

(Ⅱ)设的左顶点为若直线与曲线交于两点不是左右顶点),且满足求证直线恒过定点并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个三位数abc同时满足,则称该三位数为“凹数”,那么所有不同的三位“凹数”的个数是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知是等边三角形,平面,点为棱的中点.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂采用甲、乙两种不同生产方式生产某零件,现对两种生产方式所生产的这种零件的产品质量进行对比,其质量按测试指标可划分为:指标在区间的为一等品;指标在区间的为二等品,现分别从甲、乙两种不同生产方式所生产的零件中,各自随机抽取100件作为样本进行检测,测试指标结果的频率分布直方图如图所示:

若从甲种生产方式生产的这100件零件中按等级,利用分层抽样的方法抽取5件,再从这5件零件中随机抽取3件,求至少有1件一等品的概率;

该厂所生产这种零件,若是一等品每件可售50元,若是二等品每件可售20甲种生产方式每生产一件零件无论是一等品还是二等品的成本为10元,乙种生产方式每生产一件零件无论是一等品还是二等品的成本为18将频率分布直方图中的频率视作概率,用样本估计总体比较在甲、乙两种不同生产方式下,哪种生产方式生产的零件所获得的平均利润较高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有报道称,据南方科技大学、上海交大等8家单位的最新研究显示:ABOAB血型与COVID19易感性存在关联,具体调查数据统计如图:

根据以上调查数据,则下列说法错误的是(

A.与非O型血相比,O型血人群对COVID19相对不易感,风险较低

B.与非A型血相比,A型血人群对COVID19相对易感,风险较高

C.O型血相比,B型、AB型血人群对COVID19的易感性要高

D.A型血相比,非A型血人群对COVID19都不易感,没有风险

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构随机调查了两个企业各100名员工,得到了企业员工收入的频数分布表以及企业员工收入的统计图如下:

企业:

工资

人数

5

10

20

42

18

3

1

1

企业:

(1)若将频率视为概率,现从企业中随机抽取一名员工,求该员工收入不低于5000元的概率;

(2)(i)若从企业收入在员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,求这2人收入在的人数的分布列.

(ii)若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线C和直线的直角坐标系方程;

2)已知直线与曲线C相交于AB两点,求的值.

查看答案和解析>>

同步练习册答案