精英家教网 > 高中数学 > 题目详情

【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.

(1)根据以上数据建立一个列联表;

(2)判断性别与休闲方式是否有关系.

0.05

0.025

0.010

3.841

5.024

6.635

【答案】(1)见解析 (2)有97.5%的把握认为“休闲方式与性别有关”闲方式与性别有关”

【解析】试题分析】(1)直接依据题设条件中的数据建立如下的的列联表;(2)依据卡方公式算出,然后与数表中的参考数据进行比对,从而做出判断:

解:(1)的列联表:

休闲方式

性别

看电视

运动

总计

43

27

70

21

33

54

总计

64

60

124

(2)假设“休闲方式与性别无关”

因为,所以有理由认为假设“休闲方式与性别无关”是不合理的,即有97.5%的把握认为“休

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业为了对生产的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到以下数据:

单价x(元/件)

60

62

64

66

68

70

销量y(件)

91

84

81

75

70

67

I)画出散点图,并求关于的回归方程;

II)已知该产品的成本是36/件,预计在今后的销售中,销量与单价仍然服从(I)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数f(x)在[0,+∞)内是增函数,且f(3)=0,则关于x的不等式xf(x)≤0的解集为(
A.{x|﹣3≤x≤0或x≥3}
B.{x|x≤﹣3或﹣3≤x≤0}
C.{x|﹣3≤x≤3}
D.{x|x≤﹣3或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为为参数, ),直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)为曲线上任意一点, 为直线任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线 交椭圆于 两不同的点.

(1)求椭圆的方程;

(2)若直线不过点,求证:直线 轴围成等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:

甲是中国人,还会说英语.

乙是法国人,还会说日语.

丙是英国人,还会说法语.

丁是日本人,还会说汉语.

戊是法国人,还会说德语.

则这五位代表的座位顺序应为( )

A. 甲丙丁戊乙 B. 甲丁丙乙戊

C. 甲乙丙丁戊 D. 甲丙戊乙丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点 ,则下面说法正确的是( )

A. B. C. D. 有极小值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中 平面 ,且 .

(1)求证:

(2)在线段上,是否存在一点,使得二面角的大小为,如果存在,求与平面所成角,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①若,则“”是“”成立的充分不必要条件;

②若椭圆的两个焦点为,且弦过点,则的周长为16;

③若命题“”与命题“”都是真命题,则命题一定是真命题;

④若命题 ,则

其中为真命题的是__________(填序号).

查看答案和解析>>

同步练习册答案