精英家教网 > 高中数学 > 题目详情

(11分)探究:是否存在常数abc使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)

对对一切正自然数n均成立,若存在求出abc,并证明;若不存在,请说明理由.

 

【答案】

设存在abc使题设的等式成立,这时令n=1,2,3,有

证明见解析。

【解析】先令n=1,2,3建立关于a,b,c的三个方程,解出a,b,c的值.然后再证明时,也成立.由于是与n有关的证明问题,可以考虑用数学归纳法进行证明.

设存在abc使题设的等式成立,这时令n=1,2,3,有

于是,对n=1,2,3下面等式成立1·22+2·32+…+n(n+1)2=

Sn=1·22+2·32+…+n(n+1)2n=k时上式成立,即Sk= (3k2+11k+10)

那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2= (3k2+5k+12k+24)

=[3(k+1)2+11(k+1)+10]也就是说,等式对n=k+1也成立.

综上所述,当a=3,b=11,c=10时,题设对一切正自然数n均成立.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),若有常数M,使得对任意的x1∈D,存在唯一的x2∈D满足等式
f(x1)+f(x2)2
=M
,则称M为函数y=f (x)的“均值”.
(1)判断1是否为函数f(x)=2x+1(-1≤x≤1)的“均值”,请说明理由;
(2)若函数f(x)=ax2-2x(1<x<2,a为常数)存在“均值”,求实数a的取值范围;
(3)若函数f(x)是单调函数,且其值域为区间I.试探究函数f(x)的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2,g(x)=alnx+bx(a>0).
(Ⅰ)若f(1)=g(1),f'(1)=g'(1),求F(x)=f(x)-g(x)的极小值;
(Ⅱ)在(Ⅰ)的条件下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m?若存在,求出k和m的值.若不存在,说明理由.
(Ⅲ)设G(x)=f(x)+2-g(x)有两个零点x1,x2,且x1,x0,x2成等差数列,试探究G'(x0)值的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)和g(x),若存在常数k,m,对于任意x∈R,不等式f(x)≥kx+m≥g(x)都成立,则称直线y=kx+m是函数f(x),g(x)的分界线.已知函数f(x)=ex(ax+1)(e为自然对数的底,a∈R为常数).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设a=1,试探究函数f(x)与函数g(x)=-x2+2x+1是否存在“分界线”?若存在,求出分界线方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,试写出y=φ(x)的解析式及值域;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案