已知函数
(1)当时,求函数
的极小值;
(2)当时,过坐标原点
作曲线
的切线,设切点为
,求实数
的值;
(3)设定义在上的函数
在点
处的切线方程为
当
时,若
在
内恒成立,则称
为函数
的“转点”.当
时,试问函数
是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.
(1) ;(2)
;(3)参考解析
解析试题分析:(1)因为函数当
时,求函数
的极小值,即对函数求导通过求出极值点,即可求出极小值.
(2)过曲线外一点作曲线的切线,是通过求导得到切线的斜率等于切点与这点斜率.建立一个等式,从而确定切点横坐标的大小,由于该方程不能直接求解,所以通过估算一个值,在证明该函数的单调性,即可得到切点的横坐标.
(3)因为根据定义在上的函数
在点
处的切线方程为
当
时,若
在
内恒成立,则称
为函数
的“转点”.该定义等价于切线穿过曲线,在
的两边
的图像分别在
的上方和下方恒成立.当
时,通过讨论函数的单调性即最值即可得结论.
试题解析:(1)当时,
,
当时,
;当
时
;当
时
.
所以当时,
取到极小值
.
(2),所以切线的斜率
整理得,显然
是这个方程的解,
又因为在
上是增函数,
所以方程有唯一实数解,故
.
(3)当时,函数
在其图象上一点
处的切线方程为
,
设,则
,
若
,
在
上单调递减,
所以当时
,此时
;
所以在
上不存在“转点”.
若时,
在
上单调递减,所以当
时,
,此时
,
所以在
上不存在“转点”.
若时
,即
在
上是增函数,
当时,
,
当时,
, 即点
为“转点”,
故函数存在“转点”,且
是“转点”的横坐标.
考点:1.函数极值.2.函数的切线问题.3.新定义的问题.4.数形结合的思想.5.运算能力.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2+xsinx+cosx.
(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;
(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax3-
x2+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=x2-bx+
-
,解不等式f′(x)+h(x)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数在
处存在极值.
(1)求实数的值;
(2)函数的图像上存在两点A,B使得
是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在
轴上,求实数
的取值范围;
(3)当时,讨论关于
的方程
的实根个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax+ln x,g(x)=ex.
(1)当a≤0时,求f(x)的单调区间;
(2)若不等式g(x)< 有解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.
(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围;
(2)当a=0时,是否存在实数m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com