精英家教网 > 高中数学 > 题目详情
16.判断函数f(x)=$\frac{1}{a}$-$\frac{1}{x}$在(0,+∞)上的单调性.

分析 根据函数的单调性定义,对函数f(x)进行判断即可.

解答 解:任取x1、x2∈(0,+∞),且x1<x2
则f(x1)-f(x2)=($\frac{1}{a}$-$\frac{1}{{x}_{1}}$)-($\frac{1}{a}$-$\frac{1}{{x}_{2}}$)
=$\frac{1}{{x}_{2}}$-$\frac{1}{{x}_{1}}$
=$\frac{{x}_{1}{-x}_{2}}{{{x}_{1}x}_{2}}$;
∵0<x1<x2
∴x1x2>0,x1-x2<0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴f(x)在(0,+∞)上是单调增函数.

点评 本题考查了利用单调性定义判断函数的单调性问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.给出下列命题:①若$\overrightarrow{a}$,$\overrightarrow{b}$共线,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则($\overrightarrow{a}-\overrightarrow{b}$)∥($\overrightarrow{a}$+$\overrightarrow{b}$);②已知$\overrightarrow{a}$=2$\overrightarrow{e}$,$\overrightarrow{b}$=3$\overrightarrow{e}$,则$\overrightarrow{a}$=$\frac{3}{2}$$\overrightarrow{b}$;③若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{{e}_{1}}$≠$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$|=3|$\overrightarrow{b}$|;④△ABC中,AD是BC边上的中线,则$\overline{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AD}$,其中正确的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若集合M={x|x=2m,m∈Z},N={x|x=4n+2,n∈Z},则M?N.(填⊆,?,?,?,=)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的值域.
(1)f(x)=$\sqrt{2x+1}$+4;
(2)f(x)=$\frac{2}{x+1}$+3;
(3)f(x)=2x2-4x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知lga和lgb是方程x2+3x+1=0的两个根,求lg$\frac{a}{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=$\frac{x}{{x}^{2}+2}$,x>0,求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{2x-{x}^{2},0≤x≤1}\\{-{x}^{2},-1≤x<0}\end{array}\right.$,则函数f(x)的图象与直线y=x围成的封闭图形的面积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解不等式:x2-x+1>$\frac{1}{3}$x(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若(1-4x)10=a0+a1x+…+a10x10,求log5(|a0|+|a1|+|a2|+…+|a10|)的值.

查看答案和解析>>

同步练习册答案