精英家教网 > 高中数学 > 题目详情
11.sinα+cosα=$\frac{2}{3}$,α∈(0,π),则sinα-cosα为$\frac{2\sqrt{3}}{3}$.

分析 由已知得2sinαcosα=-$\frac{1}{3}$,cosα<0,由此能求出sinα-cosα的值.

解答 解:∵sinα+cosα=$\frac{2}{3}$,α∈(0,π),
∴(sinα+cosα)2=1+2sinαcosα=$\frac{2}{3}$,
∴2sinαcosα=-$\frac{1}{3}$,∴cosα<0,
∴(sinα-cosα)2=1-2cosαsinα=1-(-$\frac{1}{3}$)=$\frac{4}{3}$,
∴sinα-cosα=$\sqrt{\frac{4}{3}}$=$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.

点评 本题考查三角函数值的求法,是中档题,解题时要认真审题,注意同角三角函数关系式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.将四封不同的信装进写好地址的四个信封,则恰好只有一封信装错信封的概率是0;恰好有两封信装错信封的概率是$\frac{1}{4}$;(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标,设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比,试求X的分布函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线x=$\frac{2π}{3}$和x=$\frac{7π}{6}$是函数f(x)=sin(ωx+φ)(ω>0,0<φ<2π)的两条相邻的对称轴,且函数f(x)在区间($\frac{π}{6}$,$\frac{2π}{3}$)上单调递减,则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{7π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:($\frac{4}{9}$)${\;}^{\frac{3}{2}}$+(-$\frac{27}{64}$)${\;}^{-\frac{2}{3}}$-6×(5$\frac{1}{16}$)${\;}^{-\frac{3}{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将y=cos($\frac{1}{2}$x-$\frac{π}{3}$)的图象向右平移$\frac{π}{3}$后函数图象关于原点对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.确定下列各式的符号:
(1)cos310°tan(-108°);
(2)sin$\frac{5π}{4}$cos$\frac{4π}{5}$tan$\frac{11π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2(x-a),其中a为正实数.
(1)当x∈(0,1)时函数f(x)的图象上任意一点P处的切线斜率为k,若k≥-1,求a的范围;
(2)若a=-2,求曲线过点Q(-1,f(-1))的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若sin$\frac{α}{2}$=$\frac{1}{2}$,则cosα等于 (  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.±$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案