精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=m(sinx+cosx)-4sinxcosx,x∈[0,$\frac{π}{2}$],m∈R.
(1)设t=sinx+cosx,x∈[0,$\frac{π}{2}$],将f(x)表示为关于t的函数关系式g(t),并求出t的取值范围;
(2)若关于x的不等式f(x)≥0对所有的x∈[0,$\frac{π}{2}$]恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)-2m+4=0在[0,$\frac{π}{2}$]上有实数根,求实数m的取值范围.

分析 (1)利用辅助角公式,结合同角三角函数关系,即可得出结论;
(2)据(1)可知g(t)=-2t2+mt+2≥0对所有的t∈[1,$\sqrt{2}$]恒成立,所以$\left\{\begin{array}{l}{g(1)≥0}\\{g(\sqrt{2})≥0}\end{array}\right.$,即可求出实数m的取值范围;
(3)据(1)可知关于t的方程-2t2+mt+2-2m+4=0在t∈[1,$\sqrt{2}$]上有实数解,即关于t的方程2t2-mt+2m-6=0在t∈[1,$\sqrt{2}$]上有实数解,分类讨论,求出实数m的取值范围.

解答 解:(1)因为t=sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})$,x∈[0,$\frac{π}{2}$],所以t∈[1,$\sqrt{2}$],sinxcosx=$\frac{{t}^{2}-1}{2}$.…(2分)
所以g(t)=mt-4•$\frac{{t}^{2}-1}{2}$=-2t2+mt+2.…(5分)
(2)因为关于x的不等式f(x)≥0对所有的x∈[0,$\frac{π}{2}$]恒成立,
据(1)可知g(t)=-2t2+mt+2≥0对所有的t∈[1,$\sqrt{2}$]恒成立,…(6分)
所以$\left\{\begin{array}{l}{g(1)≥0}\\{g(\sqrt{2})≥0}\end{array}\right.$,得m≥$\sqrt{2}$.所以实数m的取值范围是[$\sqrt{2}$,+∞).…(10分)
(3)因为关于x的方程f(x)-2m+4=0在[0,$\frac{π}{2}$]上有实数解,
据(1)可知关于t的方程-2t2+mt+2-2m+4=0在t∈[1,$\sqrt{2}$]上有实数解,
即关于t的方程2t2-mt+2m-6=0在t∈[1,$\sqrt{2}$]上有实数解,…(11分)
所以△=m2-16(m-3)≥0,即m≤4或m≥12.
令h(t)=2t2-mt+2m-6,开口向上,对称轴t=$\frac{m}{4}$,
①当m≥12时,对称轴t≥3,函数h(t)在t∈[1,$\sqrt{2}$]上单调递减,
故$\left\{\begin{array}{l}{h(1)≥0}\\{h(\sqrt{2})≤0}\end{array}\right.$,解得m不存在.…(13分)
②当m≤4时,对称轴t≤1,函数h(t)在t∈[1,$\sqrt{2}$]上单调递增,
故$\left\{\begin{array}{l}{h(1)≤0}\\{h(\sqrt{2})≥0}\end{array}\right.$,解得2+$\sqrt{2}$≤m≤4.…(15分)
综上所述,实数m的取值范围是[2+$\sqrt{2}$,4].…(16分)

点评 本题考查三角函数式的化简,考查方程有解方法,考查学生转化问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{π}{3}$的单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$D.$\frac{\sqrt{39}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题:
①“若a2<b2,则a<b”的否命题;
②“全等三角形面积相等”的逆命题;
③“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;
④“若$\sqrt{3}$x(x≠0)为有理数,则x为无理数”的逆否命题.
其中正确的命题是(  )
A.③④B.①③C.①②D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(log23+log227)×(log44+log4$\frac{1}{4}$)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在△ABC中,已知AB=2,AC=3,∠BAC=60°,点D,E分别在边AB,AC上,且$\overrightarrow{AB}$=2$\overrightarrow{AD}$,$\overrightarrow{AC}$=3$\overrightarrow{AE}$,点F位线段DE上的动点,则$\overrightarrow{BF}$•$\overrightarrow{CF}$的取值范围是[-$\frac{1}{16}$,$\frac{1}{2}$].(  )

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$y={cos^2}(x-\frac{π}{6})$的一条对称轴为(  )
A.$x=-\frac{π}{6}$B.$x=\frac{5π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,且满足$c(\sqrt{3}sinB+cosB)=a+b$.
(Ⅰ)求角C的值;
(Ⅱ)若a=5,△ABC的面积为$5\sqrt{3}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校开设的校本课程分别有人文科学、自然科学、艺术体育三个课程类别,每种课程类别开设课程数及学分设定如下表所示:
人文科学类自然科学类艺术体育类
课程门数442
每门课程学分231
学校要求学生在高中三年内从中选修3门课程,假设学生选修每门课程的机会均等.
(Ⅰ)甲至少选1门艺术体育类课程,同时乙至多选1门自然科学类课程的概率为多少?
(Ⅱ)求甲选的3门课程正好是7学分的概率;
(Ⅲ)设甲所选3门课程的学分数为X,写出X的分布列,并求出X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),短轴长为2,离心率为$\frac{\sqrt{3}}{2}$.
(1)求此椭圆的标准方程;
(2)已知任一椭圆在其上面的点(x0,y0)处的切线方程均可写为$\frac{x{x}_{0}}{{a}^{2}}$+$\frac{y{y}_{0}}{{b}^{2}}$=1,设P是圆x2+y2=16上任意一点,过P作椭圆C的切线PA,PB,切点分别为A,B,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最值.

查看答案和解析>>

同步练习册答案