精英家教网 > 高中数学 > 题目详情

【题目】中,上一点,,且,则__________

【答案】-4

【解析】分析:先利用同角三角的基本关系求得sinCsinDBC的值,结合∠BDA=C+∠DBC,利用两角和的余弦公式求得 cosBDA 的值,可得∠BDA 的值.

再求出△ABC中各边的长,再由DAC上一点,,我们将相关数据代入平面向量数量积公式即可求解.

详解:ABC中,∵cosC=,cosDBC=

sinC=,sinDBC=

∵∠BDC=π﹣C﹣DBC,

∴∠BDA=C+∠DBC,

cosBDA=cos(C+∠DBC )=cosCcosDBC﹣sinCsinDBC

=×=

∴∠BDA=

DC=x,BC=a,

在△BDC中,由正弦定理得

∴a=

在△ABC中,AC=3x,BC=,AB=2,

cosC==,解得x=1,AD=2,CB=

=2cos(π﹣C)=2(﹣cosC)=﹣2=﹣4.

故填-4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,并且满足

(1)求数列的通项公式;

(2)若,数列的前n项和为,求

(3)在(2)的条件下,是否存在常数,使得数列为等比数列?若存在,试求出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某飞机失联,经卫星侦查,其最后出现在小岛附近,现派出四艘搜救船,为方便联络,船始终在以小岛为圆心,100海里为半径的圆上,船构成正方形编队展开搜索,小岛在正方形编队外(如图).设小岛的距离为船到小岛的距离为.

(1)请分别求关于的函数关系式,并分别写出定义域;

(2)当两艘船之间的距离是多少时搜救范围最大(即最大)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用 表示.

(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求 及乙组同学投篮命中次数的方差;
(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为16的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1 (t为参数,t ≠ 0),其中0 ≤ α < π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2 ,C3
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是 作品获得一等奖”;
乙说:“ 作品获得一等奖”;
丙说:“ 两项作品未获得一等奖”;
丁说:“是 作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的个数为( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分条件;
③命题“若m≤ ,则方程mx2+2x+2=0有实数根”的否命题为真命题.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈( ),则sinx0的值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案