精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,左、右焦点分别为,且

与该椭圆有且只有一个公共点.

(1)求椭圆标准方程;

(2)过点的直线与⊙相切,且与椭圆相交于两点,求证:

(3)过点的直线与⊙相切,且与椭圆相交于两点,试探究的数量关系.

【答案】(1)(2)见解析(3)

【解析】分析:(1)直接根据已知条件得到a,b,c的方程组,解之即得椭圆标准方程.(2)先联立直线的方程和椭圆方程得到韦达定理,再证明即证.(3) 猜想再证明.

详解:(1)与椭圆有且只有一个公共点,公共点为

若公共点为时,则,又

解得,与矛盾,故公共点为.

,又.

反之,当时,联立解得满足条件.

椭圆标准方程为.

(2),设过的直线,联立,得.

,则,又

.

与⊙相切得

,即.

(3)猜:.证明如下:由(2)得.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在圆内接四边形中,.

(1)求的大小;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)若函数处取得极值,求实数的值;

(2)(1)的结论下,若关于的不等式时恒成立的值

(3)令若关于的方程内至少有两个解,求出实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:

球队胜

球队负

总计

甲参加

甲未参加

总计

(1)求的值,据此能否有的把握认为球队胜利与甲球员参赛有关;

(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:.则:

1)当他参加比赛时,求球队某场比赛输球的概率;

2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;

3)如果你是教练员,应用概率统计有关知识.该如何使用乙球员?

附表及公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数

1)试规定的值,并解释其实际意义;

2)试根据假定写出函数应该满足的条件和具有的性质;

3)设.现有单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较省?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一年级300名学生对历史、地理学科的选课情况,对学生进行编号,用1,2,,300表示,并用表示第名学生的选课情况,其中根据如图所示的程序框图,下列说法错误的是( )

A. 为选择历史的学生人数;

B. 为选择地理的学生人数;

C. 为至少选择历史、地理一门学科的学生人数;

D. 为选择历史的学生人数与选择地理的学生人数之和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上有定义,要使函数有定义,则a的取值范围为

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了鼓励节约用电,辽宁省实行阶梯电价制度,其中每户的用电单价与户年用电量的关系如下表所示.

分档

户年用电量(度)

用电单价(元/度)

第一阶梯

0.5

第二阶梯

0.55

第三阶梯

0.80

记用户年用电量为度时应缴纳的电费为.

1)写出的解析式;

2)假设居住在沈阳的范伟一家2018年共用电3000度,则范伟一家2018年应缴纳电费多少元?

3)居住在大连的张莉一家在2018年共缴纳电费1942元,则张莉一家在2018年用了多少度电?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】港珠澳大桥于20181024日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米,桥面为双向六车道高速公路,大桥通行限速100 km/h. 现对大桥某路段上汽车行驶速度进行抽样调查,画出频率分布直方图(如图).根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过90 km/h的概率分别为

A. B.

C. D.

查看答案和解析>>

同步练习册答案