精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lg(
1
x-1
-1)
的定义域为集合A,g(x)=
-x2+4ax-3a
(a>0)
的定义域为集合B,集合C={x|2x2-6x+8>1}
(1)若A∪B=B,求实数a的取值范围.
(2)如果若B则C为真命题,求实数a的取值范围.
分析:此题考查函数的定义域,涉及到解对数不等式、指数不等式、以及集合的包含关系、命题等问题
解答:解:(1)∵函数f(x)=lg(
1
x-1
-1)
的定义域为集合A
1
x-1
-1>0

即集合A={x|1<x<2}
g(x)=
-x2+4ax-3a
(a>0)
的定义域为集合B
∴-x2+4ax-3a≥0,
即B=x|a≤x≤3a}
因为A∪B=B,所以A⊆B所以
a≤1
3a≥2
2
3
≤a≤1
…(6分)
∵集合C={x|2x2-6x+8>1}
∴x2-6x+8>0,即C={x|x<2或x>4}
若B则A为真命题,则B⊆C,
所以
a>0
3a<2
或a>4
所以a的取值范围是0<a<
2
3
或a>4…(12分)
点评:此题注重了命题与集合的关系,学生应能正确断定若B则C为真命题意味着B⊆C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案