精英家教网 > 高中数学 > 题目详情

【题目】已知m{1113151719}n{200020012019},则mn的个位数是1的概率为____________ .

【答案】

【解析】

m=11n{200020012019}时,mn的个位数都是1,此时有20种选法;

m=13n{20002004200820122016}时,mn的个位数都是1,此时有5种选法;

m=15时,mn的个位数不可能为1,此时有0种选法;

m=17n{20002004200820122016}时,mn的个位数都是1,此时有5种选法;

m=19n{2000200220042018}时,m的个位数都是1,此时有10种选法.

综上,所求概率为.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】足球比赛中,一队在本方罚球区内犯规,会被判罚点球,点球是进攻方非常有效的得分手段.研究机构对某位足球队员的1000次点球训练进行了统计分析,以帮助球员提高点球的命中率.如图,将球门框内的区域分成9个区域(区域代码为1—9,球门框外的区域记做区域0),统计球员射点球时射中10个区域次数和进球次数(即使射中球门框内,也可能被守门员扑出),得到如下的两个频率分布条形图:

(其中射中率,得分率

1)根据上述频率分布条形图,求射中球门框内时,各区域进球数的平均数(结果保留两位小数)和中位数;

2)以该队员这1000次点球练习的进球频率作为他在比赛中射点球时进球的概率,设他在三次射点球时进球数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中m为常数,且是函数的极值点.

(Ⅰ)求m的值;

(Ⅰ)若上恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左顶点为,过点的直线与椭圆交于轴上方一点,以为边作矩形,其中直线过原点.当点为椭圆的上顶点时,的面积为,且

1)求椭圆的标准方程;

2)求矩形面积的最大值;

3)矩形能否为正方形?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点的坐标为,点为椭圆上一点.

1)求椭圆的方程;

2)过椭圆的右焦点作斜率为的直线交椭圆两点,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某连锁超市旗舰店在元旦当天推出一个购物满百元抽奖活动,凡是一次性购物满百元者可以从抽奖箱中一次性任意摸出2个小球(抽奖箱内共有5个小球,每个小球大小形状完全相同,这5个小球上分别标有12345 5个数字).

1)列出摸出的2个小球的所有可能的结果.

2)已知该超市活动规定:摸出的2个小球都是偶数为一等奖;摸出的2个小球都是奇数为二等奖.请分别求获得一等奖的概率与获得二等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过的直线与抛物线C交于两点,点A在第一象限,抛物线C两点处的切线相互垂直.

1)求抛物线C的标准方程;

2)若点P为抛物线C上异于的点,直线均不与轴平行,且直线APBP交抛物线C的准线分别于两点,.

i)求直线的斜率;

(ⅱ)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于不同的两点.

1)若线段的中点为,求直线的方程;

2)若的斜率为,且过椭圆的左焦点的垂直平分线与轴交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.回归直线一定经过样本点的中心

B.若两个具有线性相关关系的变量的相关性越强,则线性相关系数的值越接近于1

C.在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高

D.在线性回归模型中,相关指数越接近于1,说明回归模型的拟合效果越好

查看答案和解析>>

同步练习册答案