已知函数f(x)=-x+log2.
(1)求f()+f(-)的值.
(2)当x∈(-a,a],其中a∈(0,1),a是常数时,函数f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,请说明理由.
科目:高中数学 来源:2014年高考数学文二轮专题复习与测试选修4-4坐标系与参数方程练习卷(解析版) 题型:解答题
在极坐标系中,O为极点,半径为2的圆C的圆心的极坐标为.
(1)求圆C的极坐标方程;
(2)P是圆C上一动点,点Q满足3,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(六)第二章第三节练习卷(解析版) 题型:选择题
已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx,设a=f(),b=f(),c=f(),则( )
(A)c<a<b (B)a<b<c (C)b<a<c (D)c<b<a
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(八)第二章第五节练习卷(解析版) 题型:选择题
设函数f(x)=若f(a)>f(-a),则实数a的取值范围是( )
(A)(-1,0)∪(0,1)
(B)(-∞,-1)∪(1,+∞)
(C)(-1,0)∪(1,+∞)
(D)(-∞,-1)∪(0,1)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(八)第二章第五节练习卷(解析版) 题型:选择题
已知a=log23.6,b=log43.2,c=log43.6,则( )
(A)a>b>c (B)a>c>b
(C)b>a>c (D)c>a>b
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(五)第二章第二节练习卷(解析版) 题型:选择题
给定函数①y=,②y=lo(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上是单调递减的函数的序号是( )
(A)①② (B)②③ (C)③④ (D)①④
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(三)第一章第三节练习卷(解析版) 题型:选择题
下列四个命题
p1:?x∈(0,+∞),()x<()x;
p2:?x∈(0,1),lox>lox;
p3:?x∈(0, +∞),()x>lox;
p4:?x∈(0,),()x<lox.
其中的真命题是( )
(A)p1,p3 (B)p1,p4 (C)p2,p3 (D)p2,p4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com