精英家教网 > 高中数学 > 题目详情
6.在“①高一数学课本中的难题;②所有的正三角形; ③方程x2-4=0的实数解”中,能够表示成集合的是(  )
A.B.C.②③D.①②③

分析 根据集合的定义,特别是集合中元素的“确定性”,分析可得结果.

解答 解:根据集合的定义,特别是集合中元素的“确定性”,分析如下:
①不能构成集合,因为“难题”无明确标准,元素不满足确定性;
②能构成集合,该集合可以写成{正三角形}或{x|x是正三角形};
③能构成集合,该集合可以写成{-2,2}.
故选C.

点评 本题主要考查了集合的定义,以及集合中元素的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在△ABC中,∠ACB=90°,D为BC的中点,PA⊥平面ABC,如果PB,PC与平面ABC所成角分别为30°、60°,那么PD与平面ABC所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,S-ABCD是正四棱锥,已知底面边长AB=6cm,侧棱SA=3$\sqrt{5}$cm,求该正四棱锥的侧面SAB的斜高SE和底面AC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BC与AE所成的角;
(2)求直线BE和平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x=$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$,y=$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$,则3x2-5xy+3y2的值是289.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\ a{log_2}x,x>0\end{array}\right.$,且f(-1)=f(2),则$f({\frac{1}{4}})$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点,沿直线BD将△BCD翻折成△BC′D,使得平面BC′D⊥平面ABD.
(Ⅰ)求证:平面DEC′⊥平面ABD;
(Ⅱ)求直线BD与平面BEC′所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个圆锥的侧面展开图是圆心角为$\frac{4}{3}π$,半径为18的扇形,则这个圆锥的体积为$288\sqrt{5}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:x2-x-2>0,q:|x|<a,若¬p是q的必要而不充分条件,则实数a的取值范围是(  )
A.a<1B.a≤1C.a<2D.a≤2

查看答案和解析>>

同步练习册答案