精英家教网 > 高中数学 > 题目详情
13.已知(1+bi)i=-1+i,则b的值为(  )
A.1B.-1C.iD.-i

分析 利用复数代数形式的乘法运算展开等式右边,由复数相等的条件求出b的值即可.

解答 解:∵(1+bi)i=-1+i,
∴i-b=-1+i,
∴b=1,
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一点P与两焦点构成的三角形面积是$\frac{36}{5}$,则点P的坐标为($\frac{\sqrt{10}}{2}$,$\frac{9}{5}$);($\frac{\sqrt{10}}{2}$,-$\frac{9}{5}$);($-\frac{\sqrt{10}}{2}$,$\frac{9}{5}$);($-\frac{\sqrt{10}}{2}$,$-\frac{9}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,内角A,B,C的对边分别是a,b,c,若sinA+cosA=1-sin$\frac{A}{2}$.
(Ⅰ)求sinA的值;
(Ⅱ)若c2-a2=2b,且sinB=3cosC,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为$\sqrt{3}$,此时四面体ABCD外接球的体积为$\frac{7\sqrt{7}}{6}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足$\left\{\begin{array}{l}y≤x-1\\ x≤3\\ x+y≥4\end{array}\right.$,则z=2x-y的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2\sqrt{2}cosxsin(x-\frac{π}{4})+1$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间$[\frac{π}{12},\;\;\frac{π}{6}]$上的最大值与最小值的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{1}{\sqrt{x-3}}$的定义域是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若直线ax+2by-2=0(a,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则ab的取值范围是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,∠PAQ是直角,圆O与射线AP相切于点T,与射线AQ相交于两点B,C.求证:BT平分∠OBA.

查看答案和解析>>

同步练习册答案