精英家教网 > 高中数学 > 题目详情
5.如图,在斜三棱柱ABC-A1B1C1中,A1B⊥AC,且A1B=AC=5,AA1=BC=13,且AB=12.
(1)求证:AA1⊥AC;
(2)求点B到面ACC1A1的距离.

分析 (1)根据线面垂直的判定定理证明AC⊥平面ABB1A1即可,
(2)根据体积法建立方程关系进行求解.

解答 (1)证明:在△ABC中,∵AB2+AC2=BC2,∴AC⊥AB,…(2分)
又∵A1B⊥AC且A1B、AC是面ABB1A1内的两条相交直线,
∴AC⊥平面ABB1A1
又AA1?平面ABB1A1,∴AA1⊥AC;…(4分)
(2)在△ABC中,∵${A_1}{B^2}+A{B^2}=A{A_1}^2$,
∴A1B⊥AB,又∵A1B⊥AC且AB、AC是面ABC内的两条相交直线,
∴A1B⊥面ABC,…(8分)
由(1)知,AA1⊥AC,
∴${s_{△{A_1}AC}}=\frac{1}{2}×5×13$,
∵${s_{△ABC}}=\frac{1}{2}×5×12$,
设点B到面ACC1A1的距离为h,
由${V_{B-{A_1}AC}}={V_{{A_1}-ABC}}$得,$\frac{1}{3}(\frac{1}{2}×5×12)×5=\frac{1}{3}(\frac{1}{2}×5×13)×h$,
解得$h=\frac{60}{13}$,
∴点B到面ACC1A1的距离为$\frac{60}{13}$…(12分)

点评 本题主要考查空间直线垂直的判定以及点到平面的距离的求解,利用体积法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.等差数列{an}中,a1<0,S9=S12,若Sn有最小值,则n=(  )
A.10B.10或11C.11D.9或10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(cos2x,$\sqrt{3}$sinx),$\overrightarrow{b}$=(1,cosx),函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$+m,且当x∈[0,$\frac{π}{6}$]时,f(x)的最小值为2.
(Ⅰ)求m的值,并求f(x)图象的对称轴方程;
(Ⅱ)设函数g(x)=[f(x)2]-f(x),x∈[0,$\frac{π}{6}$],求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中,已知向量$\overrightarrow{a}$=(1,2),又点A(8,0),B(-8,t),C(8sinθ,t).
(1)若$\overrightarrow{AB}$⊥$\overrightarrow{a}$,求向量$\overrightarrow{OB}$的坐标;
(2)若向量$\overrightarrow{AC}$与向量$\overrightarrow{a}$共线,当tsinθ取最小值时,求$\overrightarrow{OA}$•$\overrightarrow{OC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,最小正周期为π且图象关于y轴对称的函数是(  )
A.y=sin2x+cos2xB.y=sinx•cosxC.y=|cos2x|D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=AB=AD=2BC=2,∠BAD=θ,E是PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)若θ=120°,求二面角C-PB-A的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某几何体的三视图如图,则几何体的表面积为6+2$\sqrt{5}$+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的表面积为(  )
A.12+4$\sqrt{2}$+2$\sqrt{13}$B.12+8$\sqrt{2}$+2$\sqrt{13}$C.12+4$\sqrt{2}$+2$\sqrt{26}$D.12+8$\sqrt{2}$+2$\sqrt{26}$

查看答案和解析>>

同步练习册答案