精英家教网 > 高中数学 > 题目详情
2.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,右焦点为F,椭圆与y轴的正半轴交于点B,且|BF|=$\sqrt{2}$.
(1)求椭圆E的方程;
(2)若斜率为1的直线l经过点(1,0),与椭圆E相交于不同的两点M,N,在椭圆E上是否存在点P,使得△PMN的面积为$\frac{{2\sqrt{2}}}{3}$,请说明理由.

分析 (1)由题意求得a,c的值,结合隐含条件求得b,则椭圆方程可求;
(2)设出P点坐标及直线l的方程,由△PMN的面积为$\frac{{2\sqrt{2}}}{3}$求得点P到直线l的距离为1,再设出过点P与直线l平行的直线l1:y=x+m.与椭圆方程联立,由判别式等于0求得m值,再结合两平行线间的距离公式求出l与l1之间的距离,与1比较得答案.

解答 解:(1)由题意,$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{a=|BF|=\sqrt{2}}\end{array}\right.$,得c=1,∴b2=a2-c2=1.
则椭圆E的方程为:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)存在.
设点P(x,y),直线l的方程为y=x-1.
由$\left\{\begin{array}{l}{y=x-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得M(0,-1),N($\frac{4}{3},\frac{1}{3}$),
则|MN|=$\sqrt{(\frac{4}{3})^{2}+(\frac{1}{3}+1)^{2}}=\frac{4\sqrt{2}}{3}$.
则点P到直线l的距离为$\frac{2×\frac{2\sqrt{2}}{3}}{|MN|}=1$.
设过点P与直线l平行的直线l1:y=x+m.
联立$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得3x2+4mx+2m2-2=0.
由△=16m2-12(2m2-2)=0,解得m=$±\sqrt{3}$.
当m=$\sqrt{3}$时,l与l1之间的距离为$\frac{\sqrt{3}+1}{\sqrt{2}}$>1;
当m=-$\sqrt{3}$时,l与l1之间的距离为$\frac{\sqrt{3}-1}{\sqrt{2}}$<1.
则在椭圆E上存在点P,使得△PMN的面积为$\frac{{2\sqrt{2}}}{3}$.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|-1<x<2},B={x|-2≤x<0},则A∩B=(  )
A.{x|-1<x<0}B.{x|-2≤x<2}C.{x|-2<x<2}D.{x|x<-2,或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{x^2}{4}+\frac{y^2}{b^2}$=1(0<b<2)的左、右焦点分别为F1,F2,直线l过F2且与椭圆相交于不同的两点A,B,那么△ABF1的周长(  )
A.是定值4
B.是定值8
C.不是定值,与直线l的倾斜角大小有关
D.不是定值,与b取值大小有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:?x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.
(1)写出命题p的否定,并判断命题p的否定的真假;
(2)若命题“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设m,n为两条不同的直线,α为平面,则下列结论正确的是(  )
A.m⊥n,m∥α⇒n⊥αB.m⊥n,m⊥α⇒n∥αC.m∥n,m∥α⇒n∥αD.m∥n,m⊥α⇒n⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow a$=(1,-1),$\overrightarrow b$=(1,2),则$\overrightarrow b-\overrightarrow a$与$\overrightarrow a+2\overrightarrow b$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设△ABC的内角A、B、C的对边分别为a、b、c,且cosA=$\frac{3}{5}$,cosB=$\frac{5}{13}$,b=3,则c=(  )
A.$\frac{14}{5}$B.$\frac{7}{5}$C.$\frac{63}{20}$D.$\frac{33}{20}$

查看答案和解析>>

同步练习册答案