精英家教网 > 高中数学 > 题目详情
已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是
14+6
5
14+6
5
分析:把已知的方程配方后,得到此方程表示以B为圆心,3为半径的圆,在平面直角坐标系中画出此圆,所求式子即为圆上的点到原点的距离的平方,即要求出圆上的点到原点的最大距离,故连接OB并延长,与圆B交于A点,此时A到原点的距离最大,|AB|为圆B的半径,利用两点间的距离公式求出|OB|的长,根据|AB|+|OB|=|AO|求出|AO|的平方,即为所求式子的最大值.
解答:解:方程x2+y2+4x-2y-4=0变形得:
(x+2)2+(y-1)2=9,
表示圆心B(-2,1),半径为3的圆,
画出相应的图形,如图所示:

连接OB并延长,与圆B交于A点,此时x2+y2的最大值为|AO|2
又|AO|=|AB|+|BO|=3+
(-2)2+12
=3+
5

则|AO|2=(3+
5
2=14+6
5
,即x2+y2的最大值为14+6
5

故答案为:14+6
5
点评:此题考查了圆的标准方程,以及两点间的距离公式,利用了转化及数形结合的数学思想,其中找出适当的A点,根据题意得出所求式子的最大值为|AO|2是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆的直线x+2y-1=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)得条件下,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k+1)x+2的倾斜角α=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2mx-4y+5m=0的曲线是圆C
(1)求m的取值范围;
(2)当m=-2时,求圆C截直线l:2x-y+1=0所得弦长;
(3)若圆C与直线2x-y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值?

查看答案和解析>>

同步练习册答案