精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,点为椭圆外一点,过点向椭圆作两条切线,当两条切线相互垂直时,点在一个定圆上运动,则该定圆的方程为__________

【答案】

【解析】

设点,分两种情况讨论,一是直线的斜率存在且非零时,得出;二是当直线的斜率不存在或斜率等于零时,P也符合上述关系,从而求得结果.

设点,当直线的斜率存在时,设直线的斜率为,则有直线的方程为

与椭圆方程联立得:

整理得:

因为直线与椭圆相切,所以

因椭圆外一点所引的两条切线互相垂直,则有

为方程的两根,

,整理得:

当直线的斜率不存在或斜率等于零时,易得点P的坐标为,显然也满足方程

综合以上讨论得,对任意的两条互相垂直的切线,点P的坐标均满足方程

故所求的定圆的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆E的方程为 (a>b>0),点O为坐标原点,点A的坐标为(a0),点B的坐标为(0b),点M在线段AB上,满足BM2MA,直线OM的斜率为.

(1)E的离心率e

(2)设点C的坐标为(0,-b)N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且椭圆过点,离心率;点在椭圆上,延长与椭圆交于点,点中点.

(1)求椭圆C的方程;

(2)若是坐标原点,记的面积之和为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

若曲线在点处的切线与直线垂直,求函数的单调区间;

若对于都有成立,试求a的取值范围;

时,函数在区间上有两个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为.

1)求椭圆的方程;

2)直线过椭圆的左焦点,且与椭圆交于两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是双曲线的两个焦点,圆与双曲线位于轴上方的两个交点分别为,若,则双曲线的离心率为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底, 为常数).

讨论函数的单调性;

对于函数,若存在常数,对于任意,不等式都成立,则称直线是函数的分界线,,问函数与函数是否存在“分界线”?若存在,求出常数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级参加期末考试的学生中抽出50名学生,并统计了他们的数学成绩(满分为100分),将数学成绩进行分组,并根据各组人数制成如下频率分布表:

(1)写出的值,并估计本次考试全年级学生的数学平均分(同一组中的数据用该组区间的中点值作代表);

(2)现从成绩在内的学生中任选出两名同学,从成绩在内的学生中任选一名同学,共三名同学参加学习习惯问卷调查活动.若同学的数学成绩为43分,同学的数学成绩为分,求两同学恰好都被选出的概率.

查看答案和解析>>

同步练习册答案