精英家教网 > 高中数学 > 题目详情
2.已知两点A(2,0),B(3,4),设直线过点B,交y轴于点C(0,y),O是坐标原点,且O,A,B,C四点共圆,则y的值为$\frac{19}{4}$.

分析 由题意,O,A,B,C四点共圆,∠BAx+∠BCO=180°,直线BC与直线AB的差的绝对值为90°,可得kBCkAB=-1,即可得出结论.

解答 解:由题意,O,A,B,C四点共圆,∴∠BAO+∠BCO=180°,
∴直线BC与直线AB的倾斜角的差的绝对值为90°,
∴kBCkAB=-1,
∴$\frac{4-y}{3}•\frac{4}{3-2}$=-1,
∴y=$\frac{19}{4}$.
故答案为:$\frac{19}{4}$.

点评 本题考查四点共圆,考查斜率公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知f(x)=ax3-3ax+4在[0,2]上的最大值比最小值大2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C对边分别为a,b,c,已知A=$\frac{π}{3}$,cosB=$\frac{\sqrt{6}}{3}$,且c=b+$\sqrt{6}$-1
(1)求sinC的值.
(2)求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某人想利用一面旧墙围两间矩形仓库,他已备足可以砌30米长的材料,当垂直于旧墙的边长为多少时,仓库的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点M(2,3),点P在y轴上运动,点Q在圆C:(x-1)2+(y+2)2=4上运动,则|$\overrightarrow{MP}$+$\overrightarrow{MQ}$|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{2}{x-1}$+x.
(1)求函数值不小于-2时,x的取值范围;
(2)求当x大于1时,函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x2+y2=1,则x+y=[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≥0}\\{x+y-3≥0}\\{2x+y-6≤0}\end{array}\right.$,则目标函数z=x+3y的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{1}{2}$x2-ax+(a-1)lnx,a>1.
(1)曲线y=f(x)在点(2,f(2))处的切线与x轴平行,求实数a的值;
(2)讨论函数f(x)的单调性;
(3)证明:若a<5,则对任意x1,x2∈(0,+∞),x1≠x2,有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>-1.

查看答案和解析>>

同步练习册答案