精英家教网 > 高中数学 > 题目详情

【题目】如图,平面四边形中,,,,将三角形沿翻折到三角形的位置平面平面中点.

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值.

【答案】(Ⅰ)详见解析(Ⅱ)

【解析】

(Ⅰ)由题意为等边三角形,可以证明,由平面平面,可知平面,从而,进而可以得到平面即可证明(Ⅱ)为坐标原点,分别为轴,轴建立空间直角坐标系,分别求出和平面的法向量,由可以得到答案。

(Ⅰ)由题意为等边三角形,则

在三角形中,,,由余弦定理可求得

,即

又平面平面,平面平面平面

平面

等边三角形中,中点,则,且

平面

(Ⅱ)为坐标原点,分别为轴,轴建立空间直角坐标系,

是平面的法向量,则

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】天气预报说,在今后的三天中,每一天下雨的概率为,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生09之间的整数值的随机数,如果我们用1234表示下雨,用567890表示不下雨,顺次产生的随机数如下:

90 79 66 19 19 25 27 19 32 81 24 58 56 96 83

43 12 57 39 30 27 55 64 88 73 01 13 13 79 89

,这三天中恰有两天下雨的概率约为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.

1)求的分布列及数学期望;

2)在概率(=0123), 的值最大, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线

椭圆的一个交点为,点

的焦点,且.

(1)的方程;

(2)为坐标原点,在第一象限内,椭圆上是否存在点,使过的垂线交抛物线,直线轴于,且?若存在,求出点的坐标和的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位计划在一水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.

(1)求未来3年中,设表示流量超过120的年数,求的分布列及期望;

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系

年入流量

发电机最多可运行台数

1

2

3

若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业引进现代化管理体制,生产效益明显提高.2018年全年总收入与2017年全年总收入相比增长了一倍,实现翻番.同时该企业的各项运营成本也随着收入的变化发生了相应变化.下图给出了该企业这两年不同运营成本占全年总收入的比例,下列说法正确的是(

A.该企业2018年原材料费用是2017年工资金额与研发费用的和

B.该企业2018年研发费用是2017年工资金额、原材料费用、其它费用三项的和

C.该企业2018年其它费用是2017年工资金额的

D.该企业2018年设备费用是2017年原材料的费用的两倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面. 

(1)证明:平面平面

(2)若为棱的中点,,求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)时,求函数上的最大值和最小值;

(2)若函数上的单调函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案