精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=2,直线l:x+2y-4=0,点P(x0,y0)在直线l上.若存在圆C上的点Q,使得∠OPQ=45°(O为坐标原点),则x0的取值范围是(  )
A、[0,1]
B、[0,
8
5
]
C、[-
1
2
,1]
D、[-
1
2
8
5
]
考点:直线与圆相交的性质
专题:直线与圆
分析:根据条件若存在圆C上的点Q,使得∠OPQ=45°(O为坐标原点),等价PO≤2即可,求出不等式的解集即可得到x0的范围
解答: 解:圆O外有一点P,圆上有一动点Q,∠OPQ在PQ与圆相切时取得最大值.
如果OP变长,那么∠OPQ可以获得的最大值将变小.可以得知,当∠OPQ=45°,且PQ与圆相切时,PO=2,
而当PO>2时,Q在圆上任意移动,∠OPQ<45°恒成立0.
因此满足PO≤2,就能保证一定存在点Q,使得∠OPQ=45°,否则,这样的点Q是不存在的;
∵点P(x0,y0)在直线x+2y-4=0上,∴x0+2y0-4=0,即y0=
4-x0
2

∵|OP|2=x02+y02=x02+(
4-x0
2
2=
5
4
x02-2x0+4≤4,
5
4
x02-2x0≤0,
解得,0≤x0
8
5

∴x0的取值范围是[0,
8
5
]
故选:B
点评:本题考查点与圆的位置关系,利用数形结合判断出PO≤2,从而得到不等式求出参数的取值范围是解决本题的关键.综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

讨论函数f(x)=(
1
5
)
x2-2x
的单调性,并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设i是虚数单位,若(a+1)i=b+2i(a∈R,b∈R),则复数a+bi的模为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PD⊥平面ABCD,AD⊥CD,AD∥BC,PD=DC=BC;
(Ⅰ)求异面直线PB与AD所成角的余弦值; 
(Ⅱ)若AD=
1
2
BC,E为PC的中点,求证:DE∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x-y-m=0经过抛物线C:y2=2px(p>0)的焦点,l与C交与A,B两点,若|AB|=6.则p的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某三棱柱的正视图中的实线部分是边长为4的正方形,俯视图是等边三角形,则该三棱柱的侧视图的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,如果菱形OABC的边长为2,点B在y轴上,则菱形内(不含边界)的整点(横纵坐标都是整数的点)个数的取值集合是(  )
A、{1,3}
B、{0,1,3}
C、{0,1,3,4}
D、{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(a+x)-ln(a-x)(a>0).
(Ⅰ)曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,求a的值;
(Ⅱ)当x≥0时,f(x)≥2x+
2x3
3
,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

同步练习册答案