精英家教网 > 高中数学 > 题目详情
对数函数f(x)=ln|x-a|在[-1,1]区间上恒有意义,则a的取值范围是(  )
分析:根据对数函数的性质,可知在区间[-1,1]上,|x-a|>0恒成立.即在[-1,1]上|x-a|≠0即可.
故选C.
解答:解:根据对数函数的性质,可知f(x)=ln|x-a|在[-1,1]区间上恒有意义,则在区间[-1,1]上,|x-a|>0恒成立.
即在[-1,1]上|x-a|≠0即可,所以a>1或a<-1.
故选C.
点评:本题主要考查对数函数的性质以及绝对数函数的意义,要求熟练掌握相关函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实数k,b,使得函数f(x)和g(x)对其定义域上的任意实数x同时满足:f(x)≥kx+b且g(x)≤kx+b,则称直线:l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x2,g(x)=2elnx(其中e为自然对数的底数).试问:
(1)函数f(x)和g(x)的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由;
(2)函数f(x)和g(x)是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1x
+clnx
的图象与x轴相切于点S(s,0).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)的图象与过坐标原点O的直线l相切于点T(t,f(t)),且f(t)≠0,证明:1<t<e;(注:e是自然对数的底)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
.(p是实数,e是自然对数的底数)
(1)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(2)若f(x)在其定义域内为单调函数,求p的取值范围;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅲ)设函数g(x)=f(x)-(a+1)x,其中a∈R,求函数g(x)在[1,e]上的最小值(其中e为自然对数的底数).

查看答案和解析>>

同步练习册答案