精英家教网 > 高中数学 > 题目详情

【题目】如图,在中,分别为的中点是由绕直线旋转得到,连结.

1)证明:平面

2)若,棱上是否存在一点,使得?若存在,确定点 的位置;若不存在,请说明理由.

【答案】1)见解析(2)存在,的中点

【解析】

1)要证平面,则证;证由平面几何知识可得,证,只需证,即证平面,利用线面垂直判定可得.

2,等体积转化,由可解.

1)依题意得,

所以

因为分别为的中点,

所以

因为

所以

又因为沿旋转得到,

所以平面平面

平面

所以,即

所以平面

解法一:(2)若

因为

所以

所以的中点

解法二:(2)因为

所以

,所以

由(1)知平面

所以

由(1)知,在中,

,即

解得

所以为正三角形,

,所以M的中点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,的中点为O,且平面

1)证明:

2)若,求到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆过点是两个焦点.以椭圆的上顶点为圆心作半径为的圆,

1)求椭圆的方程;

2)存在过原点的直线,与圆分别交于两点,与椭圆分别交于两点(点在线段上),使得,求圆半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|2x1|3|x+1|,设fx)的最大值为M.

1)求M

2)若正数ab满足Mab,证明:a4b+ab4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了提高生产效率,对生产设备进行了技术改造,为了对比技术改造后的效果,采集了技术改造前后各20次连续正常运行的时间长度(单位:天)数据,整理如下:

改造前:1931222634152225403518162823341526202421

改造后:3229411826334234373933224235432741373836

1)完成下面的列联表,并判断能否有99%的把握认为技术改造前后的连续正常运行时间有差异?

超过30

不超过30

改造前

改造后

2)工厂的生产设备的运行需要进行维护,工厂对生产设备的生产维护费用包括正常维护费,保障维护费两种.对生产设备设定维护周期为T(即从开工运行到第kT天,k∈N*)进行维护.生产设备在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产设备能连续运行,则只产生一次正常维护费,而不会产生保障维护费;若生产设备不能连续运行,则除产生一次正常维护费外,还产生保障维护费.经测算,正常维护费为0.5万元/次;保障维护费第一次为0.2万元/周期,此后每增加一次则保障维护费增加0.2万元.现制定生产设备一个生产周期(120天计)内的维护方案:T=30k=1234.以生产设备在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及均值.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一条曲线Cy轴右侧,曲线C上任意一点到点的距离减去它到y轴的距离都等于1.

1)求曲线C的方程;

2)直线与轨迹C交于AB两点,问:在x轴上是否存在定点,使得直线关于x轴对称而与直线的位置无关,若存在,求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)过点,离心率为.其左、右焦点分别为O为坐标原点.直线l与以线段为直径的圆相切,且直线l与椭圆C交于不同的AB两点.

1)求椭圆C的方程;

2)若满足,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体ABCDEF满足:正方形ABCD与正三角形FBC所在的两个平面互相垂直,FBAEFB2EA.

1)证明:平面EFD⊥平面ABFE

2)求二面角EFDC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产企业在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:,…,,得到如下频率分布直方图.

1)求出直方图中的值;

2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的平均数和中位数(同一组中的数据用该组区间中点值作代表,中位数精确到0.01);

3)现规定:质量指标值小于70的口罩为二等品,质量指标值不小于70的口罩为一等品.利用分层抽样的方法从该企业所抽取的100个口罩中抽出5个口罩,并从中再随机抽取2个作进一步的质量分析,试求这2个口罩中恰好有1个口罩为一等品的概率.

查看答案和解析>>

同步练习册答案