精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥底面为等腰梯形且底面与侧面垂直 分别为线段的中点 .

1证明: 平面

2与平面所成角的正弦值.

【答案】1见解析;2.

【解析】试题分析:(1)根据三角形中位线定理以及线面平行的判定定理可得与平面平面平行,从而可得平面平面,进而根据面面平行的性质可得平面;(2)因为底面与侧面垂直,且,所以底面,以为坐标原点,建立空间直角坐标系,先求出的方向向量,再根据向量垂直数量积为零列方程组求出平面的一个法向量,根据空间向量夹角余弦公式,可得结果.

试题解析:1)证明:因为分别为线段的中点 所以

所以平面平面

因为平面所以平面.

2)解:因为底面与侧面垂直所以底面.

为坐标原点建立如图所示的空间直角坐标系

所以

是平面的法向量

故可取.

与平面所成角为

与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC中,角A,B,C所对的边分别为a,b,c,则“∠C>90°”的一个充分非必要条件是(
A.sin2A+sin2B<sin2C
B.sinA= ,(A为锐角),cosB=
C.c2>2(a+b﹣1)
D.sinA<cosB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据我国颁布的《环境空气质量指数()技术规定》 :空气质量指数划分为和大于300共六个等级,对应的空气质量指数的六个等级,指数越大,等级越高 ,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数不大于150时,可以进行户外活动;当空气质量指数为151及以上时,不适合进行旅游等户外活动,下表是某市2017年11月中旬的空气质量指数情况:

时间

11日

12日

13日

14日

15日

16日

17日

18日

19日

20日

142

141

125

249

129

87

68

106

238

270

(1)该市某市民在上述10天中随机选取1天进行户外活动,求该市民选取的这一天恰好不适合进行户外活动的概率;

(2)一名外地游客计划在上述10天中到市连续旅游2天求这10天中适合他旅游的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}定义为a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)当a>0时,定义数列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整数i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一组(i,j),如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定义在[-1,+∞)上的函数的图象由一条线段及抛物线的一部分组成.

(1)的值及的解析式;

(2)f(x)=,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数在区间上的值域.

(2)对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点一个焦点为的椭圆被直线截得的弦的中点的横坐标为.

(1)求此椭圆的方程;

(2)设直线与椭圆交于两点,且以为对角线的菱形的一个顶点为面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某四棱锥的三视图如图所示,该四棱锥的四个侧面的面积中最大的是( ).

A. B. C. D.

查看答案和解析>>

同步练习册答案