精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若函数的图象在处的切线斜率为,求实数的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数上是减函数,求实数的取值范围.

(1);(2)函数的单调递减区间是;单调递增区间是;(3).

解析试题分析:(Ⅰ)先求导数,再由函数的图象在x=2处的切线的斜率为1,令求解;(2)求出,然后列表求出的单调区间;(3)求出,由函数上的单调减函数,得出上恒成立,构造,判断上为减函数,从而求解。
试题解析:(1)                    1分
由已知,解得.                      3分
(2)函数的定义域为.
变化时,的变化情况如下:






-

+


极小值

由上表可知,函数的单调递减区间是;单调递增区间是.   6分
(3)由,         8分
由已知函数上的单调减函数,
上恒成立,即上恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln-a+x(a>0).
(Ⅰ)若,求f(x)图像在x=1处的切线的方程;
(Ⅱ)若的极大值和极小值分别为m,n,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若内恒成立,求实数的取值范围.
(Ⅲ),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论的单调性;
(Ⅱ)若恒成立,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:,e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 ().
(Ⅰ)求的单调区间;
(Ⅱ)试通过研究函数)的单调性证明:当时,
(Ⅲ)证明:当,且均为正实数,  时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=alnx,a∈R.
(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;
(Ⅱ)对(Ⅰ)中的φ(a),
(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;
(ⅱ)当a>0,b>0时,证明:φ′()≤≤φ′().

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且函数在点处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设点,当时,直线的斜率恒小于,试求实数的取值范围;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是常数且.
(1)当时,在区间上单调递增,求的取值范围;
(2)当时,讨论的单调性;
(3)设是正整数,证明:.

查看答案和解析>>

同步练习册答案