精英家教网 > 高中数学 > 题目详情

【题目】分形几何学是数学家伯努瓦曼德尔布罗在20世纪70年代创立的一门新的数学学科.它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图1所示的分形规律可得如图2所示的一个树形图:

易知第三行有白圈5个,黑圈4个.我们采用坐标来表示各行中的白圈、黑圈的个数.比如第一行记为,第二行记为,第三行记为.照此规律,第行中的白圈、黑圈的坐标,则________

【答案】1

【解析】

根据图甲所示的分形规律,1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,根据第三行的数据可求出第四行的坐标;再根据前五行的白圈数乘以2,分别是24102882,即,可归纳第行的白圈数,黑圈数,即可得出结论.

根据图甲所示的分形规律,1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,

第一行记为,第二行记为,第三行记为,第四行的白圈数为;黑圈数为

∴第四行的坐标

第五行的坐标

各行白圈数乘以2,分别是24102882,即

∴第行的白圈数为,黑圈数为

.

故答案为:1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数,且不同时成立),使得恒成立,则称函数映像函数”.

1)判断函数是否是映像函数,如果是,请求出相应的的值,若不是,请说明理由;

2)已知函数是定义在上的映像函数,且当时,.求函数)的反函数;

3)在(2)的条件下,试构造一个数列,使得当时,,并求时,函数的解析式,及的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,给定个整点,其中.

(Ⅰ)当,从上面的个整点中任取两个不同的整点,求的所有可能值;

(Ⅱ)从上面个整点中任取个不同的整点,.

i)证明:存在互不相同的四个整点,满足,

ii)证明:存在互不相同的四个整点,满足,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,沿河有AB两城镇,它们相距千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为(万元),表示污水流量;铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇A和城镇B的污水流量分别为两城镇连接污水处理厂的管道总长为千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到):

1)若在城镇A和城镇B单独建厂,共需多少总费用?

2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为千米,求联合建厂的总费用的函数关系式,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过椭圆E的左焦点且与x轴垂直的直线与椭圆E相交于的PQ两点,O为坐标原点,的面积为.

1)求椭圆E的方程;

2)点MN为椭圆E上不同两点,若,求证:的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,且,对于任意的,均有.

1)求证:是等比数列,并求出的通项公式;

2)若数列中去掉的项后,余下的项组成数列,求

3)设,数列的前项和为,是否存在正整数,使得成等比数列,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若时,讨论的单调性;

2)设,若有两个零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

1)讨论函数的单调性;

2)用表示中较大者,记函数.若函数上恰有2个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆心在曲线上,与直线x+y+1=0相切,且面积最小的圆的方程为(  )

A. x2+y-12=2B. x2+y+12=2C. x-12+y2=2D. x+12+y2=2

查看答案和解析>>

同步练习册答案