精英家教网 > 高中数学 > 题目详情
20.f(x)=ex,a<b.试比较f($\frac{a-b}{2}$)与的$\frac{f(b)-f(a)}{b-a}$大小.

分析 利用作差法,再构造函数,令g(x)=x+2+(x-2)ex(x>0),利用导数研究其单调性即可证明.

解答 解:∵f(x)=ex,a<b.
f($\frac{a-b}{2}$)-$\frac{f(b)-f(a)}{b-a}$=$\frac{(b-2+a)+(b-2+a){e}^{b-a}•{e}^{a}}{2(b-a)}$,
令g(x)=x+2+(x-2)ex(x>0),则g′(x)=1+(x-1)ex
g′′(x)=xex>0,∴g′(x)在(0,+∞)上单调递增,且g′(0)=0,
∴g′(x)>0,∴g(x)在(0,+∞)上单调递增,而g(0)=0,
∴在(0,+∞)上,g(x)>0.
∵当x>0时,g(x)=x+2+(x-2)•ex>0,且a<b,
∴f($\frac{a-b}{2}$)-$\frac{f(b)-f(a)}{b-a}$>0,
∴f($\frac{a-b}{2}$)-$\frac{f(b)-f(a)}{b-a}$>0,
∴f($\frac{a-b}{2}$)>$\frac{f(b)-f(a)}{b-a}$,

点评 本题综合考查了利用导数研究单调性、比较两个实数的大小等基础知识,考查了分类讨论的思想方法、转化与化归思想方法,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设全集U={(x,y)|x∈R,y∈R},M={(x,y)|$\frac{y-3}{x-2}$=1},P={(x,y)|y≠x+1},∁u(M∪P).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=${2}^{\frac{1}{1-x}}$+1og2(1+x)的定义域是(  )
A.(-∞,-1)B.(1,+∞)C.(-∞,+∞)D.(-1,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\root{6}{a{x}^{2}+ax+1}$的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若a=$\root{3}{(3-π)^{3}}$,b=$\root{4}{(2-π)^{4}}$,则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在R上的增函数,且对任意的x∈R,都有f(6-x)=-f(x),则不等式f(x2-3x-1)+f(2x+1)<0的解集为(  )
A.(-∞,2)∪(3,+∞)B.(-2,3)C.(-∞,-3)∪(2,+∞)D.(-3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式($\frac{1}{3}$)1-x<7的解集为(-∞,log321).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=$\sqrt{x-4}$,g(x)=$\sqrt{4-x}$,在f(x)+g(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若数列$\sqrt{2}$,$\sqrt{5}$,2$\sqrt{2}$,…,则2$\sqrt{5}$是这个数列的第(  )项.
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案