精英家教网 > 高中数学 > 题目详情
12.在△ABC中,∠A,B,C所对的边分别是a,b,c,若C=60°,c=2,则a+b的最大值4.

分析 利用余弦定理与基本不等式的性质即可得出.

解答 解:∵C=60°,c=2,由余弦定理可得:c2=a2+b2-2abcosC,
∴4=(a+b)2-3ab≥(a+b)2-3×($\frac{a+b}{2}$)2=$\frac{(a+b)^{2}}{4}$,
∴a+b≤4,当且仅当a=b=2时取等号.
故答案为:4.

点评 本题考查了余弦定理与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知△ABC中,cos($\frac{3π}{2}$-A)+cos(π+A)=-$\frac{1}{5}$
(1)判断△ABC是锐角三角形还是钝角三角形;
(2)求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设a1=2,an+1=$\frac{2}{{a}_{n}+1}$,bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|-1,则b2014=5•22013-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{a}{x}$+lnx.
(1)若f(x)的一条切线是y=-x+3,求f(x)的单调区间;
(2)设函数g(x)=f(x)-1在x∈[e-1,e]上有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=2xlnx-1.
(1)求函数f(x)的最小值及曲线f(x)在点(1,f(1))处的切线方程;
(2)若不等式f(x)≤3x3+2ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC是圆x2+y2=r2的内接三角形,已知A(r,0)为定点,∠BAC=60°,求△ABC重心G的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx+$\frac{1}{2}$x2-(a+2)x,a∈R.
(1)若曲线y=f(x)在点P(1,f(1))处的切线垂直于y轴,求实数a的值;
(2)若x=m和x=n是f(x)的两个极值点,其中m<n,求f(m)+f(n)的取值范围;
(3)在(2)的条件下,若a≥$\sqrt{e}$+$\frac{1}{\sqrt{e}}$-2,求f(n)-f(m)的最大值(e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,已知S1=1,S2=2,当n≥2时,Sn+1-Sn-1=2n
(1)求证:an+2-an=2n(n∈N*);
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.同一事物若从不同角度看可能个会有不同的认识,在研究“超越方程”3x=2cos2$\frac{x}{2}$的解的个数时,有如下解题思路:方程3x=2cos2$\frac{x}{2}$可化为3x-2cos2$\frac{x}{2}$=0,构造函数f(x)=3x-2cos2$\frac{x}{2}$,故f(x)=3x-1-cosx;因为f′(x)=3+sinx>0,可知f(x)在R上单调递增,又f(0)•f($\frac{π}{2}$)<0,所以函数f(x)=3x-2cos2$\frac{x}{2}$有唯一零点,即“超越方程”3x-2cos2$\frac{x}{2}$=0有唯一解:由此可见利用函数观点解决问题的优越性,类比上述解题思路,不等式x2+2x-3>sin(x2+x)+sin(x-3)的解集为R.

查看答案和解析>>

同步练习册答案