精英家教网 > 高中数学 > 题目详情
锐角三角形ABC中,关于向量夹角的说法正确的是(  )
分析:由两向量夹角定义知,
AB
BC
的夹角是180°-∠B,
AB
AC
夹角是∠A,
AC
BC
夹角是∠C,
AC
CB
的夹角是180°-∠C,由此可得结论.
解答:解:由两向量夹角定义知,
AB
BC
的夹角是180°-∠B,
AB
AC
夹角是∠A,
AC
BC
夹角是∠C,
AC
CB
的夹角是180°-∠C.
故选 B.
点评:本题主要考查两个向量的夹角的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角三角形ABC中,BC=1,AB=
2
sin(π-B)=
14
4

(1)求AC的值;
(2)求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(8cosα,2),
b
=(sinα-cosα,3),设函数f(α)=
a
b

(1)求函数f(α)的最大值;
(2)在锐角三角形ABC中,角A、B、C的对边分别问a,b,c,f(A)=6,且△ABC的面积为3,b+c=2+3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别为内角A,B,C所对的边,且满足
3
a-2bsinA=0.
(Ⅰ)求角B的大小;
(Ⅱ)若b=
7
,c=2,求
AB
AC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•蚌埠二模)在锐角三角形ABC中设x=(1+sinA)(1+sinB),y=(1+cosA)(1+cosB),则x、y大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)在锐角三角形ABC中,a、b、c分别是角A、B、C的对边,且
3
a-2csinA=0.
(Ⅰ)求角C的大小;
(Ⅱ)若c=2,求a+b的最大值.

查看答案和解析>>

同步练习册答案