精英家教网 > 高中数学 > 题目详情

【题目】已知向量,角的内角,其所对的边分别为.

(1)当取得最大值时,求角的大小;

(2)在(1)成立的条件下,当时,求的取值范围.

【答案】(1)(2)

【解析】分析:(1)由两向量的坐标,利用平面向量的数量积运算列出关系式,利用诱导公式及二倍角的余弦函数公式化简,整理后得到关于的二次函数,由的范围求出的范围,利用正弦函数的图象与性质得出此时的范围,利用二次函数的性质即可求出取得最大值时的度数;
(2)由的值,利用正弦定理表示出,再利用三角形的内角和定理用表示出,将表示出的代入中,利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,由的范围求出这个角的范围,利用正弦函数的图象与性质求出此时正弦函数的值域,即可确定出的取值范围.

详解:

(1)

,令

原式,当,即时,取得最大值.

(2)当时,.由正弦定理得:的外接圆半径)

于是

.

,得,于是

所以的范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次趣味校园运动会的颁奖仪式上,高一、高二、高三代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就座,其中高二代表队有6人.

(1)求n的值;

(2)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;

(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示中奖,则该代表中奖;若电脑显示谢谢,则不中奖,求该代表中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图 1,在直角梯形中, ,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 的中点,如图 2.

(1)求证: 平面

(2)求证: 平面

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)是一正方体的表面展开图,MN和PB是两条面对角线,请在图(2)的正方体中将MN和PB画出来,并就这个正方体解决下面问题。

(1)求证:MN∥平面PBD;

(2)求证:平面

(3)求PB和平面NMB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点A(2,4),直线l:x﹣2y+1=0.
(1)求过点A且平行于l的直线的方程;
(2)若点M在直线l上,且AM⊥l,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应十九大报告提出的实施乡村振兴战略,某村庄投资 万元建起了一座绿色农产品加工厂.经营中,第一年支出 万元,以后每年的支出比上一年增加了 万元,从第一年起每年农场品销售收入为 万元(前 年的纯利润综合=前 年的 总收入-前 年的总支出-投资额 万元).

(1)该厂从第几年开始盈利?

(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.

【答案】(1) 从第 开始盈利(2) 该厂第 年年平均纯利润达到最大,年平均纯利润最大值为 万元

【解析】试题分析(1)根据公式得到,令函数值大于0解得参数范围;(2根据公式得到,由均值不等式得到函数最值.

解析:

由题意可知前 年的纯利润总和

(1)由 ,即 ,解得

知,从第 开始盈利.

(2)年平均纯利润

因为 ,即

所以

当且仅当 ,即 时等号成立.

年平均纯利润最大值为 万元,

故该厂第 年年平均纯利润达到最大,年平均纯利润最大值为 万元.

型】解答
束】
21

【题目】已知数列 的前 项和为 ,并且满足 .

(1)求数列 通项公式;

(2)设 为数列 的前 项和,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有4个形状大小完全相同的球,球的编号分别为1,2,3,4.

(1)从盒子中不放回随机抽取两个球,求取出的球的编号之和不大于4的概率;

(2)先从盒子中随机取一个球,该球的编号为,将球放回盒子中,然后再从盒子中随机取一个球,该球的编号为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列{ }与{ },记A={ | = },B={ | = },若同时满足条件:①{ },{ }均单调递增;② ,则称{ }与{ }是无穷互补数列.
(1)若 = = ,判断{ }与{ }是否为无穷互补数列,并说明理由;
(2)若 = 且{ }与{ }是无穷互补数列,求数列{ }的前16项的和;
(3)若{ }与{ }是无穷互补数列,{ }为等差数列且 =36,求{ }与{ }得通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的个数是(
①命题“x0∈R,x02+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量 的夹角是钝角”的充分必要条件是“ <0”.
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案