精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|ax2+2x+1=0},若集合A有且仅有2个子集,则a的取值是(  )
A.1B.-1C.0或1D.-1,0或1

分析 根据集合A有且仅有2个子集,可得:集合A有且仅有1个元素,即方程ax2+2x+1=0只有一个实根,进而得到答案.

解答 解:若集合A有且仅有2个子集,
则集合A有且仅有1个元素,
即方程ax2+2x+1=0只有一个实根,
故a=0,或△=4-4a=0,
故a的取值是0或1,
故选:C

点评 本题考查的知识点是子集与真子集,将已知转化为方程根的个数,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知a=log3650.99、b=1.01365、c=0.99365,则a、b、c的大小关系为(  )
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点F1、F2与椭圆短轴的一个端点构成边长为4的正三角形.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知过椭圆C上一点(x0,y0),与椭圆C相切的直线方程为$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1.过椭圆C上任意一点P作椭圆C的切线与直线F1P的垂线F1M相交于点M,求点M的轨迹方程;
(Ⅲ)若切线MP与直线x=-2交于点N,求证:$\frac{{|N{F_1}|}}{{|M{F_1}|}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)计算${27^{-\frac{1}{3}}}+lg0.01-ln\sqrt{e}+{3^{{{log}_3}2}}$
(2)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}-{x^{-2}}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a>0,b>1,若a+b=2,则$\frac{2}{a}+\frac{1}{b-1}$的最小值为(  )
A.$3+2\sqrt{2}$B.6C.$4\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若一个底面是正三角形的三棱柱的正视图如图所示,则体积等于(  )
A.4$\sqrt{3}$B.$\frac{4}{3}$$\sqrt{3}$C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P(t,3t),t∈R,M是圆O1:(x+2)2+y2=$\frac{1}{4}$上的动点,N是O2:(x-4)2+y2=$\frac{1}{4}$上的动点,则|PN|-|PM|的最大值是(  )
A.$\frac{3\sqrt{5}}{5}$+1B.$\frac{3\sqrt{5}}{5}-1$C.$\frac{6\sqrt{5}}{5}$+1D.$\frac{6\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若角α的终边过点(-1,2),则cos(π-2α)的值为(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,挂在下方的小球做上下运动,小球在t(s)时相对于平衡位置(即静止的位置)的高度为h(单位:cm),由下列关系式确定:h=2sin(t+$\frac{π}{4}$),t∈[0,+∞).
以横轴表示时间,纵轴表示高度,作出这个函数在长度为一个周期的闭区间的简图,并回答下列问题:
(1)小球在开始振动(t=0)时的位置在哪里?
(2)小球的最高、最低位置时h的值是多少?
(3)经过多少时间小球振动一次(即周期是多少)?
(4)小球每1秒能往复振动多少次(即频率是多少)?

查看答案和解析>>

同步练习册答案