(本小题共14分)已知函数其中常数.
(1)当时,求函数的单调递增区间;
(2)当时,若函数有三个不同的零点,求m的取值范围;
(3)设定义在D上的函数在点处的切线方程为当时,若在D内恒成立,则称P为函数的“类对称点”,请你探究当时,函数是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.
(1)的单调递增区间为.(2).
(3)是一个类对称点的横坐标.
【解析】
试题分析:(1)由f′(x)=2x-(a+2)+ = =
,能求出当a>2时,求函数f(x)的单调递增区间.
(2)a=4,f′(x)=2x+ -6,故f′(x)=2x+ -6≥4 -6,不存在6x+y+m=0这类直线的切线.
(3)y=g(x)=(2x0+ -6)(x-x0)+ -6x0+4lnx0,令h(x)=f(x)-g(x),由此入手,能够求出一个“类对称点”的横坐标.
解:(1)由可知,函数的定义域为,
且.
因为,所以.
当或时,;当时,,
所以的单调递增区间为.
(2)当时,.
所以,当变化时,,的变化情况如下:
(0,1) |
1 |
(1,2) |
2 |
(2, |
|
+ |
0 |
— |
0 |
+ |
|
单调递增 |
取极大值 |
单调递减 |
取极小值 |
单调递增 |
所以,
.
函数的图象大致如下:
所以若函数有三个不同的零点,.
(3)由题意,当时,,则在点P处切线的斜率;所以
.
令,
则,.
当时,在上单调递减,所以当时,从而有时,;
当时,在上单调递减,所以当时,从而有时,;所以在上不存在“类对称点”.
当时,,所以在上是增函数,故
所以是一个类对称点的横坐标.
考点:本题主要是考查函数的单调区间的求法,考查类对称点的求法.
点评:解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,注意导数性质的灵活运用.
科目:高中数学 来源: 题型:
(08年北京卷文)(本小题共14分)
已知的顶点在椭圆上,在直线上,且.
(Ⅰ)当边通过坐标原点时,求的长及的面积;
(Ⅱ)当,且斜边的长最大时,求所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题共14分)
已知双曲线的离心率为,右准线方程为
(Ⅰ)求双曲线的方程;(Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值..
查看答案和解析>>
科目:高中数学 来源:2010年北京市宣武区高三第二次模拟考试数学(理) 题型:解答题
(本小题共14分)
已知,动点到定点的距离比到定直线的距离小.
(I)求动点的轨迹的方程;
(Ⅱ)设是轨迹上异于原点的两个不同点,,求面积的最小值;
(Ⅲ)在轨迹上是否存在两点关于直线对称?若存在,求出直线 的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2011年普通高中招生考试北京市高考理科数学 题型:解答题
((本小题共14分)
已知椭圆.过点(m,0)作圆的切线l交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(II)将表示为m的函数,并求的最大值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题
(本小题共14分)
已知点,,动点P满足,记动点P的轨迹为W.
(Ⅰ)求W的方程;
(Ⅱ)直线与曲线W交于不同的两点C,D,若存在点,使得成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com