精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C的对边分别为a,b,c,已知sinA=sin(A-B)+sinC.
(1)求角B的大小;
(2)若b2=ac,判断△ABC的形状;
(3)求证:
b•sin(C-
π
6
)
(2c-a)•cosB
为定值.
(1)∵sinA=sin(A-B)+sinC,且sinC=sin[π-(A+B)]=sin(A+B),
∴sinA=sinAcosB-cosAsinB+sinAcosB+cosAsinB=2sinAcosB,
又sinA≠0,
∴cosB=
1
2
,又B为三角形的内角,
则B=
π
3

(2)∵b2=ac,cosB=
1
2

∴由余弦定理b2=a2+c2-2accosB得:ac=a2+c2-ac,
即(a-c)2=0,
∴a=c,又B=
π
3

则△ABC为等边三角形;
(3)∵C=π-(A+B),B=
π
3

∴sin(C-
π
6
)=sin[π-(A+
π
3
)-
π
6
]=sin(
π
2
-A)=cosA,sinC=sin(A+B),
由正弦定理
a
sinA
=
b
sinB
=
c
sinC
化简得:
b•sin(C-
π
6
)
(2c-a)•cosB
=
sinB•sin(C-
π
6
)
(2sinC-sinA)•cosB
=
3
2
cosA
sin(A+
π
3
)- 
1
2
sinA

=
3
2
cosA
1
2
sinA+
3
2
cosA-
1
2
sinA
=1,
b•sin(C-
π
6
)
(2c-a)•cosB
为定值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案