精英家教网 > 高中数学 > 题目详情

【题目】中心在原点的椭圆E的一个焦点与抛物线的焦点关于直线对称,且椭圆E与坐标轴的一个交点坐标为.

1)求椭圆E的标准方程;

2)过点的直线l(直线的斜率k存在且不为0)交EAB两点,交x轴于点PA关于x轴的对称点为D,直线BDx轴于点Q.试探究是否为定值?请说明理由.

【答案】1;(2为定值4,理由详见解析.

【解析】

1)椭圆E的右焦点为,得到,计算,得到答案.

2)设直线l的方程为,联立方程得到,计算得到,计算,得到答案.

1)因为椭圆E的一个焦点与抛物线的焦点关于直线对称,

所以椭圆E的右焦点为,所以.

又椭圆E与坐标轴的一个交点坐标为,所以,又

所以椭圆E的标准方程为.

2)设直线l的方程为,则点,设

则点,联立直线l与椭圆E的方程有

,所以有,即

,即直线BD的方程为

\,得点Q的横坐标为

代入得:

所以,所以为定值4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:

①下面程序框图的算法思路源于我国古代数学名著《九章算术》中的更相减损术”.执行该程序框图,若输入的分别为812,则输出的

②若用样本数据0,-123来估计总体的标准差,则总体的标准差估计值为

③命题:,则的否命题是,则

④已知正数满足,则的最大值是

⑤已知函数满足,且当时,.在区间为增函数.

其中结论正确的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,后清陆以湉《冷庐杂识》卷一中写道近又有七巧图,其式五,其数七,其变化之式多至千余18世纪,七巧板流传到了国外,被誉为东方魔板,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.完整图案为一正方形(如图):五块等腰直角三角形、一块正方形和一块平行四边形,如果在此正方形中随机取一点,那么此点取自阴影部分的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,点的中点.

求证:平面

若直线与平面所成角为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)已知函数的两个极值点,若,①证明:;②证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:存在唯一的实数,使得直线与曲线相切;

2)若,求证:.

(注:为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒中有形状、大小、质地完全相同的5张扑克牌,其中3张红桃,1张黑桃,1张梅花.现从盒中一次性随机抽出2张扑克牌,则这2张扑克牌花色不同的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧棱垂直于底面的中点,平行于平行于面.

(1)求的长;

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案