精英家教网 > 高中数学 > 题目详情

【题目】下列方程表示的直线倾斜角为135°的是(
A.y=x﹣1
B.y﹣1= (x+2)
C. + =1
D. x+2y=0

【答案】C
【解析】解:根据题意,若直线倾斜角为135°,则其斜率k=tan135°=﹣1,

依次分析选项:

对于A、其斜率k=1,不合题意,

对于B、其斜率k= ,不合题意,

对于C、将 + =1变形可得y=﹣x+5,其斜率k=﹣1,符合题意,

对于D、将 x+2y=0变形可得y=﹣ x,其斜率k=﹣ ,不合题意,

故选:C.

【考点精析】认真审题,首先需要了解直线的倾斜角(当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α=0°).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +
(1)求f(x)的定义域A;
(2)若函数g(x)=x2+ax+b的零点为﹣1.5,当x∈A时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点. (Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x26x+5. (Ⅰ)求 的值;
(Ⅱ)若x∈[2,6],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为6的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是面DCC1D1内的动点,且满足∠APD=∠MPC,则三棱锥P﹣BCD的体积最大值是(
A.36
B.12
C.24
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知R(x0 , y0)是椭圆C: =1上的一点,从原点O向圆R:(x﹣x02+(y﹣y02=8作两条切线,分别交椭圆于点P,Q.
(1)若R点在第一象限,且直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,并记为k1 , k2 , 求k1k2的值;
(3)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的正视图1是一个底边长为4、腰长为3的等腰三角形,图2、图53分别是四棱锥P﹣ABCD的侧视图和俯视图.
(1)求证:AD⊥PC;
(2)求四棱锥P﹣ABCD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是由满足下列性质的函数f(x)的全体所组成的集合:在定义域内存在x0 , 使得f(x0+1)=f(x0)+f(1)成立.
(1)指出函数f(x)= 是否属于M,并说明理由;
(2)设函数f(x)=lg 属于M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系x0y中,已知点A(﹣ ,0),B( ),E为动点,且直线EA与直线EB的斜率之积为﹣ . (Ⅰ)求动点E的轨迹C的方程;
(Ⅱ)设过点F(1,0)的直线l与曲线C相交于不同的两点M,N.若点P在y轴上,且|PM|=|PN|,求点P的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案