精英家教网 > 高中数学 > 题目详情
6.函数y=6+loga(x-4)(a>0,a≠1)的图象恒过点(5,6).

分析 根据对数函数的图象恒过定点(1,0),令x-4=1,即可求出对应y的值.

解答 解:∵对数函数的图象恒过定点(1,0),
∴令x-4=1,解得x=5,
此时y=6+0=6,
∴函数y=6+loga(x-4)的图象恒过点(5,6).
故答案为:(5,6).

点评 本题考查了对数函数的图象恒过定点的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设x1,x2是关于x的一元二次方程x2-2(m-1)x+m+5=0的两个实根,又y=x21+x22,求y=f(m)的解析式及此函数的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=cos2ωx-$\sqrt{3}$sinωx•cosωx-$\frac{1}{2}$(0<ω<4),且f($\frac{π}{3}$)=-1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若在(-$\frac{π}{6}$,$\frac{2π}{3}$)内,函数y=f(x)+m有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C满足ccosB=(2a-b)cosC.
(1)求角C的大小;
(2)若△ABC是锐角三角形,求函数y=2sinB-cos2B的值域;
(3)在三角形ABC中,设角A,B,C的对边分别为a,b,c,若c=1,求△ABC周长的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=lgx2的定义域是(  )
A.RB.(0,+∞)C.(-∞,0)D.{x|x≠0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+a+4(a≠0).
(1)若方程f(x)=0的两个根一个根比1大,一个根比1小,求实数a的取值范围;
(2)在(1)的条件下,若a∈Z,试求方程f(x)=0的 两个根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a为实数,函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a-1)x2-ax(x∈R).
(1)当a=1时,求f(x)的单调区间;
(2)求f(x)在R上的极大值与极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,AD是⊙O的直径,B为⊙O上的一点,连接AB并延长至点E,使得AE=AD,连接DE,交⊙O于点C,连接OC.
(1)求证:OC∥AE;
(2)若OC=AB,判断△BCE的形状并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知P(-1,1)为曲线上的一点,PQ为曲线的割线,若kPQ当△x→0时的极限为-2,则在点P处的切线的方程为2x+y+1=0.

查看答案和解析>>

同步练习册答案