精英家教网 > 高中数学 > 题目详情

【题目】如图,半径为1,圆心角为 的圆弧 上有一点C.
(1)若C为圆弧AB的中点,点D在线段OA上运动,求| + |的最小值;
(2)若D,E分别为线段OA,OB的中点,当C在圆弧 上运动时,求 的取值范围.

【答案】
(1)解:以O为原点,OA为x轴建立直角坐标系,

设D(t,0)(0≤t≤1),则

所以

时,


(2)解:由题意 ,设C(cosθ,sinθ),

所以 =

因为 ,则 ,所以


【解析】(1)以O为原点,以OA为x轴正方向,建立图示坐标系,设D(t,0)(0≤t≤1),求出C坐标,推出 ,然后求出模的最小值.(2)设C(cosθ,sinθ), ,求出 的表达式,即可求出 的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点坐标分别为A(﹣1,1),B(7,﹣1),C(﹣2,5),AB边上的中线所在直线为l.
(1)求直线l的方程;
(2)若点A关于直线l的对称点为D,求△BCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2﹣2x+4y﹣20=0截直线5x﹣12y+c=0的弦长为8,
(1)求c的值;
(2)求直线y=x﹣11上的点到圆上点的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】样本(x1 , x2…,xn)的平均数为x,样本(y1 , y2 , …,ym)的平均数为 ).若样本(x1 , x2…,xn , y1 , y2 , …,ym)的平均数 +(1﹣α) ,其中0<α< ,则n,m的大小关系为(
A.n<m
B.n>m
C.n=m
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E,F分别为A1B1 , B1C1的中点,则直线BE与直线CF所成角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=4 x的交点为椭圆 (a>b>0)的右焦点,且椭圆的长轴长为4,左右顶点分别为A,B,经过椭圆左焦点的直线l与椭圆交于C,D(异于A,B)两点.

(1)求椭圆标准方程;
(2)求四边形ADBC的面积的最大值;
(3)若M(x1 , y1)N(x2 , y2)是椭圆上的两动点,且满x1x2+2y1y2=0,动点P满足 (其中O为坐标原点),是否存在两定点F1 , F2使得|PF1|+|PF2|为定值,若存在求出该定值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径,AB=AC=6,OE∥AD

(1)求二面角B﹣AD﹣F的大小;
(2)求直线BD与EF所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDE中,∠BAC=90°,AB=AC=2,CD=2AE=2,AE∥CD,且AE⊥底面ABC,F为BC的中点.

(1)求证:AF⊥BD;
(2)求二面角A﹣BE﹣D的余弦值.

查看答案和解析>>

同步练习册答案