【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为2,点P为面ADD1A1的对角线AD1的中点.PM⊥平面ABCD交AD与M,MN⊥BD于N.
(1)求异面直线PN与A1C1所成角的大小;(结果可用反三角函数值表示)
(2)求三棱锥P﹣BMN的体积.
【答案】
(1)解:∵点P为面ADD1A1的对角线AD1的中点,且PM⊥平面ABCD,
∴PM为△ADD1的中位线,得PM=1,
又∵MN⊥BD,
∴ ,
∵在底面ABCD中,MN⊥BD,AC⊥BD,
∴MN∥AC,
又∵A1C1∥AC,∠PNM为异面直线PN与A1C1所成角,
在△PMN中,∠PMN为直角, ,
∴ .
即异面直线PN与A1C1所成角的大小为
(2)解: , ,
代入数据得三棱锥P﹣BMN的体积为
【解析】(1)由已知易得M点为AD中点,MN//A1C1,∠PNM即为所求异面直线所求角或其补角,再在三角形PNM中求解.
(2) VP BMN = PM MN BN,代入数据即得三棱锥P﹣BMN的体积.
【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.
科目:高中数学 来源: 题型:
【题目】已知函数 的两个零点 满足 ,集合 ,则( )
A.m∈A , 都有f(m+3)>0
B.m∈A , 都有f(m+3)<0
C.m0∈A , 使得f(m0+3)=0
D.m0∈A , 使得f(m0+3)<0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 ,a为常数,且f(3)=
(1)求a值;
(2)求使f(x)≥4的x值的取值范围;
(3)设g(x)=﹣ x+m,对于区间[3,4]上每一个x值,不等式f(x)>g(x)恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cos ,﹣1) =( ),设函数f(x)= +1.
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)=a在区间[0,π]上有实数解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}为递增的等差数列,a1=f(x+1),a2=0,a3=f(x﹣1),其中f(x)=x2﹣4x+2,则数列{an}的通项公式为( )
A.an=n﹣2
B.an=2n﹣4
C.an=3n﹣6
D.an=4n﹣8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BOC中,OA,OB,OC两两垂直,点D,E分别为棱BC,AC的中点,F在棱AO上,且满足OF= ,已知OA=OC=4,OB=2.
(1)求异面直线AD与OC所成角的余弦值;
(2)求二面角C﹣EF﹣D的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 其中a2=﹣2,S6=6.
(1)求数列{an}的通项;
(2)求数列{|an|}的前n项和为Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com