【题目】2019年全国“两会”,即中华人民共和国第十三届全国人大二次会议和中国人民政治协商会议第十三届全国委员会第二次会议,分别于2019年3月5日和3月3日在北京召开.为了了解哪些人更关注“两会”,某机构随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制的频率分布直方图如下图所示,把年龄落在区间[15,35)和[35,75]内的人分别称为“青少年人”和“中老年人”.经统计“青少年人”和“中老年人”的人数之比为19:21.其中“青少年人”中有40人关注“两会”,“中老年人”中关注“两会”和不关注“两会”的人数之比是2:1.
(Ⅰ)求图中的值;
(Ⅱ)现采用分层抽样在[25,35)和[45,55)中随机抽取8名代表,从8人中任选2人,求2人中至少有1个是“中老年人”的概率是多少?
(Ⅲ)根据已知条件,完成下面的2×2列联表,并根据此统计结果判断:能否有99.9%的把握认为“中老年人”比“青少年人”更加关注“两会”?
关注 | 不关注 | 合计 | |
青少年人 | |||
中老年人 | |||
合计 |
【答案】(Ⅰ)(Ⅱ)(Ⅲ)见解析
【解析】
(Ⅰ)根据频率分布直方图列方程,解得结果,(Ⅱ)根据枚举法以及古典概型概率公式求结果,(Ⅲ)先根据条件列2×2列联表,再根据公式求卡方,最后对照数据作判断.
(Ⅰ)由题意得 ,解得
(Ⅱ)由题意得在[25,35)中抽取6人,记为,在[45,55)中抽取2人, 记为.
则从8人中任取2人的全部基本事件(共28种)列举如下:
记2人中至少有1个是“中老年人”的概率是,则.
(Ⅲ)2×2列联表如下:
关注 | 不关注 | 合计 | |
青少年人 | 40 | 55 | 95 |
中老年人 | 70 | 35 | 105 |
合计 | 110 | 90 | 200 |
所以有99.9%的把握认为“中老年人”比“青少年人”更加关注“两会”.
科目:高中数学 来源: 题型:
【题目】已知正方形的边长为,将沿对角线折起,使平面平面,得到如图所示的三棱锥,若为边的中点,分别为上的动点(不包括端点),且,设,则三棱锥的体积取得最大值时,三棱锥的内切球的半径为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对满足条件3x+3y+8=2xy(x>0,y>0)的任意x、y,(x+y)2﹣a(x+y)+16≥0恒成立,则实数a的取值范围是( )
A.(﹣∞,8]B.[8,+∞)C.(﹣∞,10]D.[10,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公差不为0的等差数列{an},其前n项和为Sn,若S10=100,a1,a2,a5成等比数列.
(1)求{an}的通项公式;
(2)bn=anan+1+an+an+1+1,求数列的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.
(1)求双曲线的标准方程;
(2)若点M在双曲线上,F1,F2为左、右焦点,且|MF1|+|MF2|=6,试判别△MF1F2的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图已知椭圆,是长轴的一个端点,弦过椭圆的中心,且,.
(Ⅰ)求椭圆的方程:
(Ⅱ)设为椭圆上异于且不重合的两点,且的平分线总是垂直于轴,是否存在实数,使得,若存在,请求出的最大值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com