精英家教网 > 高中数学 > 题目详情
某校高三某班在一次体育课内进行定点投篮赛,A、B为两个定点投篮位置,在A处投中一球得2分,在B处投中一球得3分.学生甲在A和B处投中的概率分别是
1
2
1
3
,且在A、B两处投中与否相互独立.
(1)若学生甲最多有2次投篮机会,其规则是:按先A后B的次序投篮.只有首先在A处投中后才能到B处进行第二次投篮.否则中止投篮,试求他投篮所得积分ξ的分布列和期望Eξ;
(2)若学生甲有5次投篮机会,其规则是:投篮点自由选择,共投篮5次,投满5次后中止投篮,求投满5次时的积分为9分的概率.
分析:(1)由题意可知随机变量ξ表示他投篮所得积分,由题意可得ξ的所有可能值为:0,2,5,利用随机变量的定义及独立事件的概率公式即可求得其分布列及期望;
(2)设“学生甲投满5次时的积分为9分”为事件C;“在A处投4球中3次,在B处投一球中1次”为事件A1,“在A处投3球中3次,在B处投2球中1次“为事件A2
“在A处投2球中0次,在B处投3球中3次”为事件A3,“在A处投1球中0次,在B处投4球中3次“为事件A4,“在B处投5球中3次”为事件A5,可知A1,A2,A3,A4,A5为互斥事件的概率公式即可求得.
解答:解:(1)由题意可知随机变量ξ表示他投篮所得积分,由题意可得ξ的所有可能值为:0,2,5.
P(ξ=0)=1-
1
2
=
1
2
,P(ξ=2)=
1
2
×(1-
1
3
)=
1
3
,P(ξ=5)=
1
2
×
1
3
=
1
6

所以随机变量ξ的分布列如下表:
精英家教网
所以随机变量期望Eξ=
1
2
+2×
1
3
+3×
1
6
=
3
2

(2)设“学生甲投满5次时的积分为9分”为事件C;“在A处投4球中3次,在B处投一球中1次”为事件A1,“在A处投3球中3次,在B处投2球中1次“为事件A2
“在A处投2球中0次,在B处投3球中3次”为事件A3,“在A处投1球中0次,在B处投4球中3次“为事件A4,“在B处投5球中3次”为事件A5,可知A1,A2,A3,A4,A5为互斥事件,则
P(C)=P(A1+A2+A3+A4+A5)=
C
3
4
×(
1
2
)
3
+(1-
1
2
1
3
+
C
3
3
×  (
1
2
)
3
 ×
C
1
2
×
1
3
×(1-
1
3
)+
C
0
2
 ×(1-
1
2
)
2
×
C
3
3
×(
1
3
)
3
+(1-
1
2
C
3
4
×(
1
3
)
3
×(1-
1
3
)+
C
3
5
×(
1
3
)
3
×(1-
1
3
)
2
=
88
243
点评:此题考查了离散型随机变量的定义及独立事件的概率公式,还考查了随机变量的分布列及期望,另外还考查了互斥事件的概率公式及学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源:陕西省宝鸡中学2012届高三适应性考试数学文科试题 题型:044

某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.

(1)求全班人数及分数在[80,90)之间的频数;

(2)估计该班的平均分数,并计算频率分布的直方图中[80,90)的矩形的高;

(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级举行的一次演讲比赛共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为(    )

A.               B.             C.              D.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级举行的一次演讲比赛共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为(  )

A.          B.          C.            D.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海交大附中高三数学理总复习二统计、统计案例练习卷(解析版) 题型:解答题

某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:

试根据图表中的信息解答下列问题:

(1)求全班的学生人数及分数在[70,80)之间的频数;

(2)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80),[80,90)和[90,100]分数段的试卷中抽取8份进行分析,再从中任选3人进行交流,求交流的学生中,成绩位于[70,80)分数段的人数X的分布列和数学期望.

 

查看答案和解析>>

同步练习册答案